To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Biotechnology Design is a question-led journal. All our contributions should relate to and help answer one of our questions. But how do we know if we are asking the right questions? What if we are missing a new piece of science, new concept, new challenge, or a new biotechnology idea that does not match one of our questions. Could this new idea lead to new questions? This is the space for these new ideas. We especially welcome contributions from early-stage research which combines early experimentation and scientific data with a new idea, challenge of application domain. These papers may ultimately be seeds for new questions, contributions to our non-peer review ‘Community Section’ which will develop over time to become full papers. As with all contributions to Biotechnology Design these contributions should be question-led and, as contributions to our ‘New Seeds?’ theme do not connect to an existing question, the question being answered should be clearly stated.
The built environment contributes to global carbon dioxide emissions with carbon-emitting building materials and construction processes. While achieving carbon-neutral construction is not feasible with conventional construction methods, microbial-based construction processes were suggested over three decades ago to reduce carbon dioxide emissions. With time, questions regarding scaling, predictability, and the applicability of microbial growth and biomass production emerged and still needed to be resolved to allow manufacturing. Within this opinion, we will discuss what can be achieved not to ‘grow a building’ per se but to ‘grow environmentally friendly biocement’. Elaborate pathways leading to the formation of cementitious materials by genetically manipulatable microorganisms have been described so far, providing options to enhance the suitability of these pathways for construction with synthetic biology and bioconvergence. These processes can also be combined with additional beneficial properties of cement-producing organisms, such as antimicrobial properties and carbon fixation by photosynthesis. Therefore, while we cannot yet ‘grow a building’, we can grow and design biocement for the construction industry.
The crystal structure of danofloxacin mesylate has been solved and refined using synchrotron X-ray powder diffraction data and optimized using density functional theory techniques. Danofloxacin mesylate crystallizes in space group P1 (#1) with a = 6.77474(8), b = 12.4973(4), c = 12.82826(28) Å, α = 84.8709(29), β = 87.7501(10), γ = 74.9916(4)°, V = 1044.723(11) Å3, and Z = 2. The protonation of the danofloxacin cations was established by the analysis of potential intermolecular interactions and differs from that expected from isolated-cation calculations. The crystal structure consists of alternating layers of cations and anions parallel to the ac-plane. There is parallel stacking of the oxoquinoline rings along the a-axis. The expected N–H⋯O hydrogen bonds between the cations and anions are not present. Each cation makes an N–H⋯O hydrogen bond with the other cation, resulting in zig-zag chains along the a-axis. Both cations have strong intramolecular O–H⋯O hydrogen bonds. There are several C–H⋯O hydrogen bonds between the danofloxacin cations and mesylate anions. The powder pattern has been submitted to ICDD® for inclusion in the Powder Diffraction File™ (PDF®).
A new polymorphic form of sodium selenite pentahydrate is reported in this contribution. We determined its crystal structure from laboratory powder diffraction data recorded at room temperature. It crystallizes in the monoclinic system P21/n with Z = 4. The lattice parameters are a = 15.01473(16) Å, b = 7.03125(7) Å, c = 8.13336(10) Å, β = 98.4458(10)°, and V = 849.345(16) Å3. The crystal structure exhibits a layered structure with isolated 1D chains running along the b-axis.
The biotechnology design (biodesign) enterprise is reshaping our relationship with nature and requires broad public engagement for innovative and ethical development. However, current biodesign programs are often limited to formal education settings such as universities, community colleges, and high schools. To grow deeper networks with and among communities that are often excluded, we need new approaches and learning spaces. These must expand the diversity of voices that frame biodesign questions and drive when, where, and how we practice biotechnology design. Through our work, we have found that community-based biodesign spaces (informal learning spaces) can empower multidirectional and multigenerational knowledge exchange and advance a more diverse, inclusive, and innovative biodesign enterprise. In this article, we illustrate the benefits of a biodesign education ecosystem through case studies of three learning spaces: (1) a community bio laboratory, (2) an educational summer camp, and (3) an art-based maker space. This informal educational ecosystem brings together artists, educators, activists, and researchers to elevate ancestral science knowledge, creativity, play, and storytelling as central to biodesign education. While each is important independently, emergent power comes from connections between community biotechnology design spaces. By highlighting successful approaches used across these spaces, our three case studies show how diverse community engagement can sustain a vibrant biodesign ecosystem. Our findings can inform existing biodesign approaches and broaden their impact to grow a more innovative, relevant, and accountable biodesign enterprise.
We prove that certain differential operators of the form $ DLD $ with $ L $ hypergeometric and $ D=z\frac{\partial }{dz} $ are of Picard–Fuchs type. We give closed hypergeometric expressions for minors of the biextension period matrices that arise from certain rank 4 weight 3 Calabi–Yau motives presumed to be of analytic rank 1. We compare their values numerically to the first derivative of the $ L $-functions of the respective motives at $ s=2 $.
Cyber-physical systems (CPS) combine computations in embedded systems with physical dynamics, typically interconnected using networks. Predictability and reliability of combined software and hardware systems are crucial for CPS design (Lee, 2008), but all parts in a real CPS are not necessarily predictable. Specifically, operating in a physical environment introduces different aspects of uncertainty, including uncertainties in sensors, the physical dynamics of the system itself and interactions with other systems or humans. There is a large body of knowledge about reasoning with uncertainty in fields and topics such as statistics, automatic control and sensor fusion. However, how to program for uncertainty in complex cyber-physical systems needs to be better understood. What are the fundamental software abstractions? How do they compose and interact?
Synchrotron powder diffraction data is presented for a series of relatively phase-pure smectite clay mineral standards obtained from the Clay Minerals Society. Rietveld refinement using a model for turbostratic disorder was performed to estimate the lattice parameters and mineral impurities in the smectite standards. Bragg reflection lists and raw data have been provided for inclusion in the Powder Diffraction File.
X-ray powder diffraction data, unit-cell parameters, and space group for the barium copper iodate, Ba2Cu(IO3)6, are reported [a = 7.48540(15) Å, b = 7.51753(19) Å, c = 7.64259(17) Å, α = 98.8823(7)°, β = 95.0749(7)°, γ = 97.6297(7)°, V = 418.528(9) Å3, Z = 1, and space group P$\bar{1}$]. All measured lines are indexed and are consistent with the corresponding space group. The single-crystal diffraction data of Ba2Cu(IO3)6 are also reported [a = 7.493(3) Å, b = 7.521(6) Å, c = 7.644(5) Å, α = 98.855(18)°, β = 95.060(16)°, γ = 97.62(2)°, V = 419.3(5) Å3, Z = 1, and space group P$\bar{1}$]. The crystal structure of Ba2Cu(IO3)6 features isolated [Cu(IO3)6]4− anionic clusters separated by Ba2+ cations. The experimental powder diffraction pattern matches well with the simulated pattern derived from the single crystal data.
With the increasing need for architectural sustainability, biodesign offers a new approach to incorporating living organisms in building materials. Bacteria hold a range of biological activities that impact their environment, and which could enable the solidification of inorganic materials; this has already been seen with microbially-induced carbonate precipitation that strengthens bonds between sand particles. This paper describes the novel development of an additive co-fabrication manufacturing process, demonstrating an interdisciplinary approach of architecture and microbiology. Specifically, the activity of a biological deposition (i.e., cyanobacterial calcium carbonate precipitation) and its integration with that of a robotic deposition (i.e., a sand-based biomixture) within an architectural biofabrication workflow. Two bacterial strains were successfully grown in potential sand-based construction materials. Microbiological protocols, such as optical density and fluorescence measurements, were then applied to identify parameters, for harvesting light through photosynthesis and harnessing it to the sedimentation of calcium carbonate. Assessments of the proposed mechanical delivery system and printing properties enabled the outlining of a suitable robotic deposition system for sand-based mixtures. Through examinations of these microbiological and mechanical protocols, this paper outlines design strategies and tradeoffs for an integrated workflow, that corresponds with both the biological (micro) and architectural (macro) scales.
Biosecurity is essential for safeguarding biological materials and technologies, but traditional approaches often lack the excitement and engagement needed for widespread adoption. This question seeks to explore innovative strategies that go beyond conventional methods, incorporating interdisciplinary collaboration, creative activism, and groundbreaking design to spark biosecurity socialization.
There has been a rapid rise of interest in the potential of digital twins to transform a vast range of Cyber-Physical System (CPS) applications, from national infrastructure to surgical robots. But what frameworks, methods and tools are needed to create and maintain digital twins on which we can depend?
Introducing state-of-the art computational methods, this book combines detailed explanations with real-world case studies to give a full grounding in the design of engineering materials. This book presents a wide spectrum of key computational methods, such as CALPHAD-method, first-principles calculations, phase-field simulation and finite element analysis, covering the atomic-meso-macro scale range. The reader will see these methods applied to case studies for steel, light alloys, superalloys, cemented carbides, hard coating and energy materials, demonstrating in detail how real-world materials are designed. Online ancillary material includes input files for computational design software, providing the reader with hands-on design experience. Step-by-step instructions will allow you to perform and repeat the simulations discussed in the book. Aimed at both graduate and undergraduate students as well as non-specialist researchers in materials science and engineering, including ceramics, metallurgy, and chemistry, this is an ideal introductory and reference book.
Chapter 5 focuses on the CALPHAD approach and its thermodynamic basis with the crucial concept of “phase." The origins, development, and principles of the CALPHAD method are briefly explained and current software is compiled (Thermo-Calc, Pandat, FactSage, and more). Thermodynamic modeling of Gibbs energy is introduced, from simple pure substances to complex solution phases. Examples of how to establish a thermodynamic database are given, and key issues on the consistency, coherency, quality assurance, and safety of the database are emphasized. The most important application examples in the computational design of alloys and their processing are separated in two levels. In the first level, solely thermodynamic CALPHAD databases are required. It is shown which type of calculations have proved most useful to guide design. In the second level, applications using extended CALPHAD-type databases with kinetic and thermophysical material parameters are outlined for casting, solidification, and heat treatment processes. The use of advanced CALPHAD-type software packages is demonstrated. Finally, a case study on design of Al alloys with improved hot cracking resistance is presented with these tools.
Chapter 10 starts with category and production processes of cemented carbides. Subsequently, case studies for three cemented carbides are demonstrated. In the case of ultrafine cemented carbide, thermodynamic calculations were utilized to select composition and sintering temperature to avoid segregation of the (Ta,W)C phase. Optimal mechanical properties were obtained via adding VC and Cr3C2 inhibitors and the selected sintering temperature and composition. For WC–Co–Ni–Al cemented carbides, calculated phase diagrams and interfacial energy were employed to optimize the composition of Co–Ni–Al binder phase and sintering temperature. The morphology of WC was controlled through phase-field simulation and microstructure characterization. The best trade-off between transverse rupture strength and Rockwell hardness is obtained accordingly. For gradient cemented carbides, thermodynamic and diffusion calculations were performed to select composition and sintering schedule to provide microstructure parameters. A microstructure-based model was then developed to predict the hardness distribution. This simulation-driven materials design leads to development of these products within three years.