To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The crystal structure of butenafine hydrochloride has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional theory techniques. Butenafine hydrochloride crystallizes in space group P21 (#4) with a = 13.94807(5), b = 9.10722(2), c = 16.46676(6) Å, β = 93.9663(5)°, V = 2086.733(8) Å3, and Z = 4. Butenafine hydrochloride occurs as a racemic co-crystal of R and S enantiomers of the cation. The crystal structure is characterized by parallel stacks of aromatic rings along the b-axis. Each cation forms a strong discrete N–H⋯Cl hydrogen bond. The chloride anions also act as acceptors in several C–H⋯Cl hydrogen bonds from methylene, methyl, and aromatic groups. The powder pattern has been submitted to ICDD for inclusion in the Powder Diffraction File™ (PDF®).
In deception research, little consideration is given to how the framing of the question might impact the decision-making process used to reach a veracity judgment. People use terms such as “sure” to describe their uncertainty about an event (i.e., aleatory) and terms such as “chance” to describe their uncertainty about the world (i.e., epistemic). Presently, the effect of such uncertainty framing on veracity judgments was considered. By manipulating the veracity question wording the effect of uncertainty framing on deception detection was measured. The data show no difference in veracity judgments between the two uncertainty framing conditions, suggesting that these may operate on a robust and invariant cognitive process.
A theoretical and experimental framework for novel metamaterial with programmable damping properties is presented. This material system is able to switch between elastic-dominated and damping-dominated regimes with different overall stiffness under dynamic loading depending on the external stimulus. The unit cell combines an auxetic and a bellow-like layer separated by an interface through which the amount of media flow can be tuned depending on the lateral strain. A simplified analytical model is derived to analyse the programmable damping effect. The model is further extended with a fluid-dynamics approach to link the effective damping properties with geometrical parameters to aid with the practical design of the metamaterial. Afterward, experiments are conducted on a macroscopic level using laser-sintered unit cells to validate the functionality of the concept both with air and water as media within the unit cells. To conclude the work, initial results on microscopic-level unit cells fabricated by two-photon lithography are introduced to showcase the scalability of the concept. This work provides an experimentally validated theoretical framework for future investigations to design unit cells with programmable damping on different length scales for applications requiring tailored dynamic energy dissipation.
Shape memory polymers (SMPs) are atype of programmable materials capable of transforming their shapes in a pre-programmed way upon the application of an external stimulus. These materials have been tested for various potential applications particularly in the biomedical field for polymers with general and specific requirements. This review focuses on the recent advances in biomedical applications, including self-tightening sutures, pressure bandages, self-expansion stents, tissue engineering scaffolds, artificial muscles, drug delivery, and orthodontic archwires, after a brief description of the concepts, classifications, programming procedures, and material requirements of SMPs.
The U.S. National Committee for Crystallography (USNC/Cr) of the National Academies of Sciences, Engineering, and Medicine provided an online workshop series for researchers on the use, development, and maintenance of crystallographic and structural databases in the Spring of 2022. Encompassing macromolecular, small molecule, and powder diffraction information, the series included 11 modules each meeting for 1 or 2 days. Graduate students, postdoctoral fellows, faculty members and researchers in any of the crystallographic, diffraction, and imaging sciences affiliated with the International Union of Crystallography (IUCr) were encouraged to register and participate in the training sessions that interest them.
Human-designed objects have traditionally been constructed of relatively inert matter, and some recently examples been enhanced using stimuli-responsive ‘active matter’. Biotechnology offers the opportunity to consider living cells as constructional matter. However, living cells are distinct from familiar categories of matter because they were once independent organisms themselves. Construction with living cells involves cybernetic and behavioural concepts as well as the laws of mechanics: cells are ‘agential matter’. They make decisions and solve problems in ways that can be exploited by engineers, much as they have been exploited by evolution in creating multicellular organisms. Building with agential matter poses unique challenges, requiring the bioengineer to tame collective behaviours of cellular swarms by exploiting techniques of top-down control (behaviour-shaping signals) alongside bottom-up reconfiguration of molecular hardware. However, exploiting the multiscale competency of life offers unprecedented opportunities for engineering, regenerative medicine, and robotics. Agential materials have transformative potential but require complex design methods that go beyond our current methods of engineering and the reductionism present in biological research. We invite contributions that design, explain or test these methods.
The crystal structure of encorafenib, C22H27ClFN7O4S, has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional theory techniques. Encorafenib crystallizes in space group P21 (#4) with a = 16.17355(25), b = 9.52334(11), c = 17.12368(19) Å, β = 89.9928(22)°, V = 2637.50(4) Å3, and Z = 4. The crystal structure consists of alternating layers of stacked halogenated phenyl rings and the other parts of the molecules perpendicular to the a-axis. One molecule participates in two strong N–H⋯N hydrogen bonds (one intra- and the other intermolecular), which are not present for the other molecule. The intermolecular hydrogen bonds link molecule 2 into a spiral chain along the b-axis. The powder pattern has been submitted to ICDD for inclusion in the Powder Diffraction File™ (PDF®).
X-ray fluorescence (XRF) is frequently used to measure layer thickness in the micrometer range. But also X-ray diffraction (XRD) can be used in a comparable way and offers the benefit to differentiate coating layers by their crystal structure. Thus, the thickness of different oxide layers of the same element can be determined, e.g., FeO, Fe3O4, and Fe2O3 on Fe-substrate. An approach for such measurement is discussed. Furthermore, with a suitable sample stage, a spatially resolved coating thickness map can be measured in a nondestructive way. Applications and validations of the presented XRD method for the measurement of the thickness of zinc coatings on steel are given and compared with results from XRF, glow-discharge optical emission spectroscopy, and optical micrographs. In addition, the methodology was tested and validated using XRF reference standards and iron nitride and iron oxide layers.
Ageism has become a social problem in an aged society. This study re-examines an ageism affirmation strategy; the designs and plans for this study were pre-registered. Participants were randomly assigned to either an experimental group (in which they read an explanatory text about the stereotype embodiment theory and related empirical findings) or a control group (in which they read an irrelevant text). The hypothesis was that negative attitudes toward older adults are reduced in the experimental group compared with the control group. Bayesian analysis was used for hypothesis testing. The results showed that negative attitudes toward older adults were reduced in the experimental group. These findings contribute to the development of psychological and gerontological interventions aimed at affirming ageism. In addition, continued efforts to reduce questionable research practices and the spread of Bayesian analysis in psychological research are expected.
How can biotechnologies and biomaterials shape and sustain habitats in extreme and space environments? Biotechnologies and biomaterials have been considered essential to the design of habitats in extreme environments such as outer space. Recent advancements in biotechnological research present novel ways in which materials, artefacts and architectural systems can be designed and developed to support life in extreme environments in space and on Earth. Different bioaspects are also researched to address the increasingly extreme environments on Earth due to climate change. Some of these innovations include the use of microbial ecologies and mycelium-based materials to grow radiation-resistant, self-healing and adaptable space architecture. Designing for extreme environments is a complex activity and benefits from an interdisciplinary and transdisciplinary research approach. We invite a diverse range of research contributions that explore, critically evaluate, and shape potential biotechnological futures in extreme and space environments. This includes innovative biomaterials and biodesign ranging from artefacts to habitats and systems that shape and sustain interactions between biological systems to enable advancement of space exploration.
Dimethyl carbonate (DMC) is an important industrial solvent but is additionally a common component of liquid lithium-ion battery electrolytes. Pure DMC has a melting point of 277 K, so encountering solidification under outdoor climatic conditions is very likely in many locations around the globe. Even eutectic, ethylene carbonate:dimethyl carbonate commercial LiPF6 salt electrolyte formulations can start to solidify at temperatures around 260 K with obvious consequences for their performance. No structures for crystalline DMC are currently available which could be a hindrance for in situ battery studies at reduced temperatures. A time-of-flight neutron powder diffraction study of the phase behavior and crystal structures of deuterated DMC was undertaken to help fill this knowledge gap. Three different orthorhombic crystalline phases were found with a previously unreported low-temperature phase transition around 50–55 K. The progression of Pbca → Pbcm → Ibam space groups follow a sequence of group–subgroup relationships with the final Ibam structure being disordered around the central carbon atom.
When two waves interact within a rock sample, the interaction strength depends strongly on the sample’s microstructural properties, including the orientation of the sample layering. The study that established this dependence on layering speculated that the differences were caused by cracks aligned with the layers in the sample. To test this, we applied a uniaxial load to similar samples of Crab Orchard Sandstone and measured the nonlinear interaction as a function of the applied load and layer orientation. We show that the dependence of the nonlinear signal changes on applied load is exponential, with a characteristic load of 11.4–12.5 MPa that is independent of sample orientation and probe wavetype (P or S); this value agrees with results from the literature, but does not support the cracks hypothesis.
While bioelectronic devices hold great promise in revolutionizing medicine and healthcare, they also face numerous challenges that must be overcome (you can add some references from above here). This includes improving the longevity and safety of these devices, ensuring their ethical use, and ensuring their compatibility with the human body and the environment.
There are several concerns with the use of bioelectronic sensors for healthcare applications, including:
1. Implantation: Bioelectronic sensors that are implanted into the body can cause discomfort, infection, and scarring, and they can also trigger an immune response that can affect their performance over time. This degradation of the sensor can be toxic to the body.
2. Power supply: Bioelectronic sensors often require a power source to operate, which can be a challenge for devices especially those that are implanted inside the body. If at all, bioelectronic sensors must draw power, then it must be at a minimum possible.
3. Data security: Bioelectronic sensors can generate sensitive medical information, which must be protected from unauthorized access, hacking, or data breaches.
4. Performance: Bioelectronic sensors must be highly accurate and reliable, as even small errors in readings can have significant consequences for patient health.
5. Interoperability: Bioelectronic sensors must be able to work seamlessly with other medical devices and software, to enable the exchange and analysis of data.
6. Cost: Bioelectronic sensors can be expensive, both to manufacture and to maintain, which can limit their accessibility and affordability for patients.
7. Regulatory approval: Bioelectronic sensors must be approved by regulatory agencies such as the FDA, which can be a lengthy and complex process that requires extensive testing and data analysis.
8. Designing good bioelectronic sensors remains a challenge due to unavailability of necessary circuit simulation tools. Software currently available may be good for normal electronic circuits, but design of any bioelectronic circuit is different and challenging. Proposed solutions must show that value addition.
There are a number of concerns with the use of bioelectronic sensors for environmental monitoring:
1. Durability: Bioelectronic sensors can be vulnerable to physical damage and degradation from exposure to harsh environmental conditions.
2. Interference: Bioelectronic sensors can be susceptible to interference from other electrical signals or devices, leading to inaccurate readings.
3. Power supply: Bioelectronic sensors often require a power source to operate, which can be a challenge in remote or inaccessible locations.
4. Sensitivity: Bioelectronic sensors can be sensitive to a wide range of environmental variables, making it difficult to isolate the specific signals of interest.
5. Data processing: Bioelectronic sensors generate substantial amounts of data, which can be challenging to process, analyse, and interpret.
6. Cost: Bioelectronic sensors can be expensive to manufacture, maintain, and replace, which can limit their widespread deployment.
7. Biofouling: Bioelectronic sensors can be susceptible to fouling or build-up of biological material on their surfaces, reducing their performance over time.
Bioelectronics have been gaining popularity in recent years due to their potential use in the field of neurorehabilitation. The aim is to use these technologies to help individuals recover from various neurological conditions such as stroke, spinal cord injury, and traumatic brain injury. The basic principle behind bioelectronics is to use electrical/optical stimulation to activate neurons in the brain and promote functional recovery. One example of bioelectronics use in neurorehabilitation is through the development of brain-computer interfaces (BCIs). BCIs are computer systems that use electrodes to detect and interpret electrical signals generated by the brain. These signals can then be used to control external devices such as robotic limbs, exoskeletons, and computer interfaces. The hope is that BCIs will help individuals with paralysis or other conditions regain movement and control over their limbs.
The Defining Issues Test (DIT) has been widely used in psychological experiments to assess one’s developmental level of moral reasoning in terms of postconventional reasoning. However, there have been concerns regarding whether the tool is biased across people with different genders and political and religious views. To address the limitations, in the present study, I tested the validity of the brief version of the test, that is, the behavioral DIT, in terms of the measurement invariance and differential item functioning (DIF). I could not find any significant non-invariance at the test level or any item demonstrating practically significant DIF at the item level. The findings indicate that neither the test nor any of its items showed a significant bias toward any particular group. As a result, the collected validity evidence supports the use of test scores across different groups, enabling researchers who intend to examine participants’ moral reasoning development across heterogeneous groups to draw conclusions based on the scores.
Seven varieties of forage oats from China were evaluated in the temperate environment of Bhutan for morphological traits, dry matter production, and forage quality. The oat variety Qingyin No. 1 provided a greater plant height (61 cm) and the largest number of tillers per plant (five tillers per plant). The leaf-stem ratio (LSR) was highest for Longyan No. 2 (LSR 0.73). During harvest in late winter, Longyan No. 2 had a greater plant height (64 cm) and the highest number of tillers per plant (seven tillers per plant), followed by Qingyin No. 1. The top three varieties with high LSRs of 1.49, 1.31, and 1.35 were Longyan No. 1, 2, and 3, respectively. In both summer and winter, Longyan No. 2 had the highest forage yields of around 5.00 and 4.00 DM t/ha, respectively. Qingyin No. 1 was the second largest forage producer, with under 5.00 DM t/ha in summer and under 3.00 DM t/ha in winter. For forage quality, Longyan No. 2 and Longyan No. 3 had the highest levels of crude protein (15%) in summer. However, during late winter, the Linna variety had the highest crude protein content (13%). The overall results of the field experiments suggest that Longyan No. 2 and Qingyin No. 1 are promising new oat varieties for winter fodder production in the temperate environments of Bhutan.
Under the influence of γ-quanta (60Co, P = 9.276 rad/s, T = 300 K), the amount, formation rate, and radiation-chemical yield of molecular hydrogen obtained from the radiolysis process that changes the mass of water (m = 0.0001 ÷ 0.8 g) have been defined in the created nano-SiO2/H2O system with m = 0.2 g mass and d = 20 nm particle size. It was determined that the radiation-chemical yield of molecular hydrogen obtained from the water radiolysis process in the nano-SiO2/H2O system created by the adsorption of water on the nanoparticle surface had a low value. In systems created with the addition of water, the radiation-chemical yield of molecular hydrogen obtained from its radiolysis increased in direct proportion to the water mass. This proves that due to ionizing rays, the yield of electrons emitted from the nanoparticle surface into the water and solvated there increases. Therefore, the radiation-chemical yield of molecular hydrogen is higher than that of the adsorbed system.