To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This study reports on the anisotropic indentation response of α-titanium. Coarse-grained titanium was characterized by electron backscatter diffraction. Sphero-conical nanoindentation was performed for a number of different crystallographic orientations. The grain size was much larger than the size of the indents to ensure quasi-single-crystal indentation. The hexagonal c-axis was determined to be the hardest direction. Surface topographies of several indents were measured by atomic force microscopy. Analysis of the indent surfaces, following Zambaldi and Raabe (Acta Mater. 58(9), 3516–3530), revealed the orientation-dependent pileup behavior of α-titanium during axisymmetric indentation. Corresponding crystal plasticity finite element (CPFE) simulations predicted the pileup patterns with good accuracy. The constitutive parameters of the CPFE model were identified by a nonlinear optimization procedure, and reproducibly converged toward easy activation of prismatic glide systems. The calculated critical resolved shear stresses were 150 ± 4, 349 ± 10, and 1107 ± 39 MPa for prismatic and basal 〈a〉-glide and pyramidal〈c + a〉-glide, respectively.
An instrumented indentation method is established to accurately measure the local elastic-plastic material properties of a single fiber by accounting for the additional sources of compliance associated with fiber indentation. The Oliver-Pharr instrumented indentation data analysis method is compared for indentation of a standard, planar fused silica sample and in the radial direction of homogeneous, isotropic E-glass fibers of two different diameters. Compliance contributions from substrate deflection and other nonindentation-related fiber deflections are quantified and shown to be negligible. The added compliance observed is attributed to the lack of constraint due to the finite geometry of a curved fiber surface. This compliance contribution is accounted for by using a proposed area correction to capture the geometry of the curved fiber-probe contact combined with a structural compliance correction. Implementation of these corrections to experimental indentation curves results in accurate measurements of the fiber elastic modulus and hardness.
Constitutive models that describe crystal microplasticity in a continuum framework can be envisaged as average representations of the dynamics of dislocation systems. Thus, their performance needs to be assessed not only by their ability to correctly represent stress–strain characteristics on the specimen scale but also by their ability to correctly represent the evolution of internal stress and strain patterns. Three-dimensional discrete dislocation dynamics (3D DDD) simulations provide complete knowledge of this evolution, and averages over ensembles of statistically equivalent simulations can therefore be used to assess the performance of continuum models. In this study, we consider the bending of a free-standing thin film. From a continuum mechanics point of view, this is a one-dimensional (1D) problem as stress and strain fields vary only in one dimension. From a dislocation plasticity point of view, on the other hand, the spatial degrees of freedom associated with the bending and piling up of dislocations are essential. We compare the results of 3D DDD simulations with those obtained from a simple 1D gradient plasticity model and a more complex dislocation-based continuum model. Both models correctly reproduce the nontrivial strain patterns predicted by 3D DDD for the microbending problem.
Creep during loading and recovery phases after load removal are studied using a homemade experimental device that allows us to record in situ the evolution of the true contact area and of the residual imprint versus the time. Indentation tests are performed using a spherical indenter with a tip radius R = 400 μm onto amorphous polymeric surface poly(methylmethacrylate) (PMMA) at different contact durations (10–105 s) and controlled temperatures varying between −20 and 100 °C. Original experimental results are presented about the true evolution of the contact area during creep and recovery phases. An interesting experimental parameter, defined by the ratio a(t)/a0, (with a(t), evolution of the contact radius with creep or relaxation time, and a0, the initial value of the contact radius at the end of the loading phase or at the end of the creep phase) has been introduced to describe the evolution of imposed strain during indentation. As a function of the temperature and of the initial average strain imposed at the end of the loading phase, some nonlinear phenomena can be observed. Using two-dimensional axisymmetric finite element modeling, assuming only viscoelastic behavior, creep and recovering phases during indentation have been reproduced. The simulation results indicate that (i) the test is mainly controlled by the imposed strain and not by the contact pressure, and (ii) some plasticity could appear in the contact zone and as a function of the location and the size of the volume where the strain is maximal, the recovery is more or less limited.
Large-scale industrial production of carbon nanotubes (CNTs) has recently become available, but there are relatively few reports of the investigation of these industrially produced bulk CNTs as potential electrode materials for electrochemical energy storage such as lithium-ion batteries (LIBs). Here, we report our evaluation of the electrochemical performance of the industrially produced CNTs from one manufacturer and our utilization of a kinetically controlled, vapor diffusion synthesis method combined with in-situ carbothermal reduction to homogeneously grow nanocrystalline tin (Sn) particles (∼200 nm) in the matrix of the CNTs, yielding a Sn@CNTs composite. After surface coating with a layer of carbon coating (3–4 nm), this composite was transformed to a surface-modified Sn@CNTs composite that exhibited much higher reversible capacity, initial Coulombic efficiency, and rate capacity than the pristine CNTs as anode materials for LIB.
A TiO2/carbon nanotubes (TiO2/CNTs) composite was synthesized by chemical vapor deposition method with in situ growth of CNTs using hydrothermally treated TiO2 as the starting material. The nanocomposite was characterized by powder x-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, high-resolution transmission electron microscopy, Raman spectrum, and nitrogen adsorption/desorption isotherms and was investigated as an anode material for lithium-ion batteries. The underlying mechanism for the improvement was analyzed by cyclic voltammetry and electrochemical impedance spectroscopy. The in situ synthesized composite showed better electrochemical performance than the pristine TiO2. The in situ formed CNTs not only supply an efficient conductive network but also keep the structural stability of the TiO2 particles, leading to improved electrochemical performance.
Dynamic tensile strength of polyurea is measured at an ultrahigh strain rate of 1.67 × 107 s−1 by generating spall failures inside thick polyurea coatings bonded to steel plates using laser-generated stress waves of several nanoseconds in duration. Specifically, thick polyurea films were cast on a steel plate whose backside was provided with water glass–covered Al film. The Al film was melted by focusing a high-energy Nd:YAG laser pulse over 3-mm-diameter area. Exfoliation of the Al generated a compressive stress wave toward the polyurea coating, which turned tensile upon reflection from the free surface. At a threshold laser energy, the amplitude of the returning tensile stress wave exceeded the dynamic tensile strength of polyurea. The stress wave profile inside the steel plate was interferometrically recorded at the threshold laser fluence and was used in a wave mechanics simulation to calculate the peak tensile stress. The polyurea was modeled as a viscoelastic solid.
The asymmetrical hysteresis loops of the longitudinal field annealed Co58Fe5Ni10Si11B16 amorphous ribbons were studied. Longitudinal magnetic training was deliberately performed on the annealed samples with exchange bias behavior. It was found that the shifted loops can be technically controlled by training the ribbons to modulate the abnormal magnetic features. The scanning probe microscope results reveal that the AC longitudinal magnetic training can decrease the vertical magnetic signal on the sample surface to a great extent. This skillful magnetic training method provides an approach to tailor the exchange bias behavior in the Co-based amorphous ribbons for potential applications.
The role played by catalyst aggregates in the growth of carbon nanocoils (CNCs) by a chemical vapor deposition (CVD) method has been studied. The experimental results show that CNCs can be grown from the discrete aggregates on a substrate with a porous surface, while only some irregular carbon nanofibers are grown from those on a flat substrate. It is accepted from the viewpoint of mechanics that the spiral motion of a CNC should generate a torsional moment on its base that attaches to an aggregate. The catalyst particles readily expand on the flat substrate during the CVD process and form a loose aggregate, which cannot provide a strong interaction between the aggregate and the base of a carbon fiber grown from there. On the contrary, the expansion of catalyst particles in a microsized hole is restricted by the surrounding wall of the hole, leading to the formation of a compact aggregate that fixes the base of the grown fiber. A perfect CNC can be grown only under the condition that its base is firmly fixed by an aggregate that can balance the torsional moment of the CNC during its spiral growth.
Over a long period (>10 years), the prediction of iron/mild steel corrosion in concrete requires the use of a mechanistic approach. For that purpose, a key point of the mechanisms involved is the localization of the oxygen reduction sites within the thick corrosion layers, which may greatly influence the nature of the rate-limiting step. In this context, iron rebars (originally covered with concrete) were sampled from a 50-year-old historical building and submitted to isotopic tracers methods (18O) combined with structural Raman microspectroscopy analyses on transverse sections. By this method, the authors demonstrate that the oxygen reduction sites are strongly impacted by the presence of a conductive phase (magnetite) in contact with the metallic substrate.
Silicon carbide nanowires (SiCNWs) (with diameters of tens of nanometer and aspect ratio well above 103), consisting of β-SiC one-dimensional single crystals wrapped in amorphous nitrogen-containing SiO2 sheaths, were efficiently synthesized in gram quantities by autogenous combustion synthesis using Si as a defluorination reagent of poly(tetrafluoroethylene). The combustion temperature was evaluated using the emission spectroscopy. Vapor–liquid–solid mechanism of a self-catalytic growth of the SiCNWs is proposed.
We report controlled modifications in the semiconductor-to-metal transition characteristics of VO2 single-crystal thin films induced by swift heavy ion (SHI) irradiation with varying ion fluences. At very high energies of ions (200 MeV Au), the electronic stopping (∼2009 eV/Å) dominates over nuclear stopping (∼16 eV/Å). Under these extreme electronic excitation conditions caused by electronic stopping and the passage of SHIs through the entire thickness of the film, creation of certain unique type of defects and disordered regions occurs. X-ray diffraction, Raman spectroscopy, infrared transmission spectroscopy, x-ray photoelectron spectroscopy (XPS), and electrical measurements were performed to investigate the characteristics and role of these defects on structural, optical, and electrical properties of VO2 thin films. XPS and electrical resistivity measurements suggest that the ion irradiation induces localized defect states that appear to correlate well with the creation of disordered regions in the VO2 thin films. The high-energy heavy-ion irradiation changes the transition characteristics drastically from a first-order to a second-order transition (electronic—Mott type). The low-temperature conductance data for these ion-irradiated films fit well with the quasiamorphous model for resistivity of VO2, where ion irradiation is believed to create mid-bandgap defect states.
Graphitic carbon (GC) is prepared using an ion-exchange resin as carbon source at 600 °C. A Co salt is selected as the graphitization catalyst and is pre-exchanged onto the resin during the ion-exchange process. The GC is characterized by transmission electron microscopy, x-ray diffraction, Raman spectroscopy, and thermogravimetry. Analysis of the crystallization shows that graphitization can occur at a temperature of as low as 600 °C, compared to the usual temperature of above 2000 °C in industry and above 1000 °C in literature. Different carbon structures have been found for different pretreatments of the resin and different heat treatment temperatures. This energy-saving method is an important breakthrough for the economic mass production of GC.
A strategic scheme for controlling the shape of titania nanorods while maintaining their highly crystallized state was investigated in terms of the effects of reactant concentration and temperature change on the formation mechanism. Lowering the temperature from 433 to 413 K markedly slowed down the reaction rate and resulted in the coexistence of amorphous-like films and crystalline titania nanorods due to the concurrence of nucleation out of the amorphous phase and particle growth by crystallization. Based on these findings, a strategy for shape control was proposed and long, high aspect ratio titania nanorods in a highly crystallized state were successfully synthesized.
Results are presented for modeling the growth of TiO2 on the rutile (110) surface. We illustrate how long time scale dynamics techniques can be used to model thin film growth at realistic growth rates. The system evolution between deposition events is achieved through an on-the-fly Kinetic Monte Carlo method, which finds diffusion pathways and barriers without prior knowledge of transitions. We examine effects of various experimental parameters, such as substrate bias, plasma density, and stoichiometry of the deposited species. Growth of TiO2 via three deposition methods has been investigated: evaporation (thermal and electron beam), ion-beam assist, and reactive magnetron sputtering. We conclude that the evaporation process produces a void filled, incomplete structure even with the low-energy ion-beam assist, but that the sputtering process produces crystalline growth. The energy of the deposition method plays an important role in the film quality.