To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We characterize injective continuous maps on the space of real or complex rectangular matrices preserving adjacent pairs of matrices. We also extend Hua's fundamental theorem of the geometry of rectangular matrices to the infinite-dimensional case. An application in the theory of local automorphisms is presented.
This paper treats rational homology groups of one-point compactifications of spaces of complex monic polynomials with multiple roots. These spaces are indexed by number partitions. A standard reformulation in terms of quotients of orbit arrangements reduces the problem to studying certain triangulated spaces Xλ,μ.
A diophantine system is studied from which is deduced an analogue of van der Corput's A5-process in order to bound analytic exponential sums of the form . The saving has now to be taken to the exponent 1/20 instead of 1/32. Our main application is a “ninth derivative test” for exponential sums which is essential for giving new exponent pairs in [3].
This paper considers the dynamics of a three-dimensional nonlinear autonomous system that models the behaviour of an electrical circuit. Results on the existence of stable periodic oscillations and the behaviour of Poincaré–Bendixon types are obtained. The work is based on a variation of classical monotone systems theory.
For an indefinite quadratic form f(x1,…,xn) of discriminant d. let P(f) denote the greatest lower bound of the positive values assumed by f for integers x1, …, xn. This paper investigates the values of P3/|d| for nonzero ternary forms of signature −1, and finds the only remaining class of forms with .
Let L be a Galois extension of the number field K. Set n = nK = deg K/ℚ, nL = deg L/ℚ and nL/K = deg L/K. Let I = IL/K denote the group of fractional ideals of K whose prime decomposition contains no prime ideals that ramify in L, and let P = {(α)ΣI: αΣK*, α>0}. Following Hecke [9}, let (λ1, λ2, …, λn − 1) be a basis for the torsion-free characters on P that satisfy λi(α) = 1 (1≤i≤n − 1) for all units α>0 in , the ring of integers of K. Fixing an extension of each λi to a character on I, then λi,(α) (1 ≤i≤n − 1) are defined for all ideals α of K that do not ramify in L. So, for such ideals, we can define . Then the small region of K referred to above is
for 0<l<½ and with the notation that, for any α ∈ ℝ, we set β. where β is the unique real satisyfing .
This paper establishes the main features of the spectral theory for the singular two-point boundary-value problemandwhich models the buckling of a rod whose cross-sectional area decays to zero at one end. The degree of tapering is related to the rate at which the coefficient A tends to zero as s approaches 0. We say that there is tapering of order p ≥ 0 when A ∈ C([0, 1]) with A(s) > 0 for s ∈ (0, 1] and there is a constant L ∈ (0, ∞) such that lims→0A(s)/sp = L. A rigorous spectral theory involves relating (1)−(3) to the spectrum of a linear operator in a function space and then investigating the spectrum of that operator. We do this in two different (but, as we show, equivalent) settings, each of which is natural from a certain point of view. The main conclusion is that the spectral properties of the problem for tapering of order p = 2 are very different from what occurs for p < 2. For p = 2, there is a non-trivial essential spectrum and possibly no eigenvalues, whereas for p < 2, the whole spectrum consists of a sequence of simple eigenvalues. Establishing the details of this spectral theory is an important step in the study of the corresponding nonlinear model. The first function space that we choose is the one best suited to the mechanical interpretation of the problem and the one that is used for treating the nonlinear problem. However, we relate this formulation in a precise way to the usual L2 setting that is most common when dealing with boundary-value problems.
In this paper we present a result of existence of infinitely many arbitrarily small positive solutions to the following Dirichlet problem involving the p-Laplacian,where Ω ∈ RN is a bounded open set with sufficiently smooth boundary ∂Ω, p > 1, λ > 0, and f: Ω × R → R is a Carathéodory function satisfying the following condition: there exists t̄ > 0 such thatPrecisely, our result ensures the existence of a sequence of a.e. positive weak solutions to the above problem, converging to zero in L∞(Ω).
The main goal of this paper is to prove that the classical theorem of local inversion for functions extends in finite dimension to everywhere differentiable functions. As usual, a theorem of implicit functions can be deduced from this “Local Inversion Theorem”. The deepest part of the local inversion theorem consists of showing that a differentiable function with non-vanishing Jacobian determinant is locally one-to-one. In turn, this fact allows one to extend the Darboux property of derivative functions on ℝ (the range of the derivative is an interval) to the Jacobian function Df of a differentiable function, under the condition that this Jacobian function does not vanish. It is also proved that these results are no longer true in infinite dimension. These results should be known in whole or part, but references to a complete proof could not be found.
We consider the Dirichlet problem for the equation -Δpu = q(|x|)f(u) in an annulus Ω ⊂ Rn, n ≥ 1, where Δpu = div(|∇u|p−2∇u) is the p-Laplacian operator, p > 1. With no assumption on the behaviour of the nonlinearity f either at zero or at infinity, we prove existence and localization of positive radial solutions for this problem by applying Schauder's fixed-point theorem. Precisely, we show the existence of at least one such solution each time the graph of f passes through an appropriate tunnel. So, it is easy to exhibit multiple, or even infinitely many, positive solutions. Moreover, upper and lower bounds for the maximum value of the solution are obtained. Our results are easily extended to the exterior of a ball, when n > p.
It is shown that Lipschitz quotient mappings between finite dimensional spaces behave nicely (e.g., are bijective in the case of equal dimensions) if the Lipschitz and co-Lipschitz constants are close to each other. For Lipschitz quotient mappings of the plane, a bound for the cardinality of the pre-image of a point in terms of the ratio of the constants is obtained.
Fermat gave the first example of a set of four positive integers {a1, a2, a3, a4} with the property that aiaj+1 is a square for 1≤i<j≤4. His example was {1, 3, 8, 120}. Baker and Davenport [1] proved that the example could not be extended to a set of 5 positive integers such that the product of any two of them plus one is a square. Kangasabapathy and Ponnudurai [6], Sansone [9] and Grinstead [4] gave alternative proofs. The construction of such sets originated with Diophantus who studied the problem when the ai are rational numbers. It is conjectured that there do not exist five positive integers whose pairwise products are all one less than the square of an integer. Recently Dujella [3] proved that there do not exist nine such integers. In this note we address the following related problem. Let V denote the set of pure powers, that is, the set of positive integers of the form xk with x and k positive integers and k>1. How large can a set of positive integers A be if aa′ + 1 is in V whenever a and a′ are distinct integers from A? We expect that there is an absolute bound for |A|, the cardinality of A. While we have not been able to establish this result, we have been able to prove that such sets cannot be very dense.
The notion of generalized X-ray for star sets in a Riemannian manifold is introduced to prove uniqueness theorems for convex bodies contained in a simply convex neighbourhood of a two-manifold. These results extend to the whole space and to arbitrary dimension when spaces of constant curvature are considered. As a consequence, a characterization of centrally symmetric convex bodies is obtained.
Given a sequence of linear formsin m ≥ 2 complex or p-adic numbers α1, …,αm ∈ Kv with appropriate growth conditions, Nesterenko proved a lower bound for the dimension d of the vector space Kα1 + ··· + Kαm over K, when K = Q and v is the infinite place. We shall generalize Nesterenko's dimension estimate over number fields K with appropriate places v, if the lower bound condition for |Rn| is replaced by the determinant condition. For the q-series approximations also a linear independence measure is given for the d linearly independent numbers. As an application we prove that the initial values F(t), F(qt), …, F(qm−1t) of the linear homogeneous q-functional equationwhere N = N(q, t), Pi = Pi(q, t) ∈ K[q, t] (i = 1, …, m), generate a vector space of dimension d ≥ 2 over K under some conditions for the coefficient polynomials, the solution F(t) and t, q ∈ K*.
The volume of the Lp-centroid body of a convex body K ⊂ ℝd is a convex function of a time-like parameter when each chord of K parallel to a fixed direction moves with constant speed. This fact is used to study extrema of some affine invariant functionals involving the volume of the Lp-centroid body and related to classical open problems like the slicing problem. Some variants of the Lp-Busemann-Petty centroid inequality are established. The reverse form of these inequalities is proved in the two-dimensional case.
Let v be a Henselian valuation of any rank of a field K and its unique prolongation to a fixed algebraic closure of K having value group . For any subfield L of , let R(L) denote the residue field of the valuation obtained by restricting to L. Using the canonical homomorphism from the valuation ring of v onto its residue field R(K), one can lift any monic irreducible polynomial with coefficients in R(K) to yield a monic irreducible polynomial with coefficients in K. In an attempt to generalize this concept, Popescu and Zaharescu introduced the notion of lifting with respect to a (K, v)-minimal pair (α, δ) belonging to × . As in the case of usual lifting, a given monic irreducible polynomial Q(y) belonging to R(K(α))[y] gives rise to several monic irreducible polynomials over K which are obtained by lifting with respect to a fixed (K, v)-minimal pair (α, δ). If F, F1 are two such lifted polynomials with coefficients in K having roots θ, θ1, respectively, then it is proved in the present paper that in case (K, v) is a tame field, it is shown that K(θ) and K(θ1) are indeed K-isomorphic.
Absolute curvature measures for locally finite unions of sets with positive reach are introduced, extending the definition of Zähle [13] by taking into account the absolute value of the index function. It is shown that this definition differs from that of Matheron [5] and Schneider [12]. An intersection formula of Crofton type for absolute curvature measures is proved. The role of absolute curvature measures in geometric statistics is illustrated by an example.