To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Interaction equations of long and short water wave are considered. It is shown that the Cauchy problem for
is locally well posed in the largest space where the three conservations
can be justified. Here E(u,v) is the energy functional associated to the system. By these conservation laws, we establish the global well-posedness of the system in the largest class of initial data.
In this note we prove that the equation x2 + 1 = yn, x, y, n ɛ ℕ, n>2, has no solutions (x, y, n)with 2 × y. Moreover, all solutions (x, y, n)of the equation with 2| y satisfy n < 5. 106 and y < exp exp exp 30.
Non-negative solutions of the initial boundary value problem for a degenerate parabolic equation are investigated. It is shown that solutions blow up regionally in finite tine. The size of blow-up sets is determined for radially symmetric cases.
A fundamental prerequisite for the numerical computation of optimal controls is to show that sequences of suboptimal (that is, close-to-optimal) controls converge. We show this in a version that applies to hyperbolic and parabolic distributed parameter systems, the latter including the Navier–Stokes equations. The optimal problems include control and state constraints; in the parabolic case, the constraints may be pointwise on the solution and the gradient.
Consider the unique continuation problem for the nonlinear Schrödinger (NLS) equation
By using the inverse scattering transform and some results from the Hardy function theory, we prove that if u ∈ C(R; H1(R)) is a solution of the NLS equation, then it cannot have compact support at two different moments unless it vanishes identically. In addition, it is shown under certain conditions that if u is a solution of the NLS equation, then u vanishes identically if it vanishes on two horizontal half lines in the x–t space. This implies that the solution u must vanish everywhere if it vanishes in an open subset in the x–t space.
We study the bifurcation of limit cycles in general quadratic perturbations of the particular quadratic system which represents one of two codimension-five components in the intersection of two strata in the centre manifold, and Q4. The study of limit cycles for this degenerate case requires us to investigate not the first but the second variation M2 of the displacement function. We prove that up to three limit cycles can emerge from the period annulus surrounding the centre. This implies that the cyclicity of period annuli of nearby systems in and Q4 is at most three as well. Our approach relies upon the possibility of deriving appropriate Picard–Fuchs equations satisfied by the four independent integrals included in M2.
A ring R is called radical if it coincides with its Jacobson radical, which means that Rforms a group under the operation a ° b = a + b + ab for all a and b in R. This group is called the adjoint group R° of R. The relation between the adjoint group R° and the additive group R+ of a radical rin R is an interesting topic to study. It has been shown in [1] that the finiteness conditions “minimax”, “finite Prufer rank”, “finite abelian subgroup rank” and “finite torsionfree rank” carry over from the adjoint group to the additive group of a radical ring. The converse is true for the minimax condition, while it fails for all the other above finiteness conditions by an example due to Sysak [6] (see also [2, Theorem 6.1.2]). However, we will show that the converse holds if we restrict to the class of nil rings, i.e. the rings R such that for any a є R there exists an n = n(a) with an = 0.
This paper addresses the computation of normal forms for periodic retarded functional differential equations (FDEs) with autonomous linear part. The analysis is based on the theory previously developed for autonomous retarded FDEs. Adequate nonresonance conditions are derived. As an illustration, the Bogdanov–Takens and the Hopf singularities are considered.
The set of points (α, β) ∈ℝ2 for which the problem − δu = αu+ − βu− in Ω, u = 0 on ∂Ω(u+ = max {u, o} and u− = min {−u, 0}) has nontrivial solutions is important for the study of certain nonlinear problems. It is shown that for ‘most’ bounded domains Ω in ℝn, such a set is locally the union of a finite number of curves.
In [4] Dipper and James investigated the representation theory of Hecke algebras of type Bn, H(Bn). Using the results in [4] and exploiting the fact that the Hecke algebra of type F4, denoted by H(W), contains two copies of H(B3) certain right ideals of H(W) will be constructed in this paper. These right ideals will be proved to be irreducible on the assumption that H(W) is semisimple.
We construct nontrivial, non-negative quasiconvex functions denned on M2×2 with p-th order growth such that the zero sets of the functions are Lipschitz graphs of mappings from subsets of a fixed two-dimensional subspace to its orthogonal complement. We assume that the graphs do not have rank-one connections with the Lipschitz constants sufficiently small. In particular, we are able to construct quasiconvex functions which are homogeneous of degree p (p > 1) and ‘conjugating’ invariant.
We consider steady potential hydrodynamic-Poisson systems with a dissipation term (viscosity) proportional to a small parameter v in a two- or three-dimensional bounded domain. We show here that for any smooth solution of a boundary value problem which satisfies that the speed, denoted by |∇φv|, has an upper coarse bound , uniform in the parameter v, then a sharper, correct uniform bound is obtained: the viscous speed |∇φv| is bounded pointwise, at points x0 in the interior of the flow domain, by cavitation speed (given by Bernoulli's Law at vacuum states) plus a term of that depends on . The exponent is β = 1 for the standard isentropic gas flow model and β = 1/2 for the potential hydrodynamic Poisson system. Both cases are considered to have a γ-pressure law with 1<γ<2 in two space dimensions and 1 < γ< 3/2 in three space dimensions. These systems have cavitation speeds which take not necessarily constant values. In fact, for the potential hydrodynamic-Poisson systems, cavitation speed is a function that depends on the potential flow function and also on the electric potential.
In addition, we consider a two-dimensional boundary value problem which has been proved to have a smooth solution whose speed is uniformly bounded. In this case, we show that the pointwise sharper bound can be extended to the section of the boundary ∂Ω\∂3Ω, where ∂3Ω is called the outflow boundary. The exponent β varies between 1 and 1/8 depending on the location of x0 at the boundary and on the curvature of the boundary at x0. In particular, our estimates apply to classical viscous approximation to transonic flow models.
We discuss existence and lowersemicontinuity for clusters of materials minimising an energy given by a collection of norms φij on the interfaces between regions Ri and Rj. Following Ambrosio and Braides, we exhibit a problem for which the triangle inequality holds but existence fails, and we state a new sufficient condition for lowersemicontinuity, which may be necessary.
In this paper, we consider the question of existence of solutions and their regularity properties for a large class of stochastic evolution equations governed by B-evolutions involving two different Hilbert spaces. This allows dynamic boundary conditions together with noisy boundary data. They cover also stochastic boundary value problems. Our results are illustrated by two practical examples.
We discuss the existence of positive solutions of some singularity perturbed elliptic equations on convex domains with nonlinearity changing sign. In particular, we obtain solutions with both a boundary layer and a sharp interior peak.
In this paper, the existence and uniqueness of the global smooth solution are proved for an evolutionary Ginzburg–Landau model for superconductivity under the Coulomb and Lorentz gauge.
We consider the one-dimensional, nonlocal, evolution equation derived by De Masi et al. (1995) for Ising systems with Glauber dynamics, Kac potentials and magnetic field. We prove the existence of travelling fronts, their uniqueness modulo translations among the monotone profiles and their linear stability for all the admissible values of the magnetic field for which the underlying spin system exhibits a stable and metastable phase.
The existence of periodic solutions is studied for certain singularly perturbed differential inclusions. Applications are given to dry friction problems.