To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We give sufficient conditions under which a funclion f: X → Y is an open mapping, where X and y are Banach spaces. This function is not necessarily continuous, but is assumed to have closed graph. We prove our results without requiring that f be Gateaux differentiable; instead, f is assumed to possess a weak type of Gateaux inverse derivative.
Interpolation properties of the class of disjointly strictly singular operators on Banach lattices are studied. We also give some applications to compare the lattice structure of two rearrangement invariant function spaces. In particular, we obtain suitable analytic characterisations of when the inclusion map between two Orlicz function spaces is disjointly strictly singular.
We prove partial regularity for minimisers of quasiconvex integrals of the form ∫Ωf(Du(x))dx. More precisely, we consider an integrand f(ξ) having subquadratic growth, i.e. | f(ξ)|≦L(1+|ξ|p) with p < 2. The case of a general integrand depending also on x and u is also considered.
In this paper we discuss C1-linearisations of diffeomorphisms and flows on Banach spaces. Strong foliations of the neighbourhood of the fixed point composed of leaves based on successively larger subspaces (similar to those in [14]) are constructed. Generalised gap conditions which involve the width and separation of vertical bands containing the spectrum of a linear operator are imposed to achieve maximal smoothness. The method of proof generalises that of Hartman and of Mora and Solá-Morales. Our theorems apply to weakly coupled systems of damped wave and beam equations.
We consider the question: is every compact set in a Banach space X contained in the closed unit range of a compact (or even approximable) operator on X? We give large classes of spaces where the question has an affirmative answer, but observe that it has a negative answer, in general, for approximable operators. We further construct a Banach space failing the bounded compact approximation property, though all of its duals have the metric compact approximation property.
A basic question in mathematical ecology is that of deciding whether or not a model for the population dynamics of interacting species predicts their long-term coexistence. A sufficient condition for coexistence is the presence of a globally attracting positive equilibrium, but that condition may be too strong since it excludes other possibilities such as stable periodic solutions. Even if there is such an equilibrium, it may be difficult to establish its existence and stability, especially in the case of models with diffusion. In recent years, there has been considerable interest in the idea of uniform persistence or permanence, where coexistence is inferred from the existence of a globally attracting positive set. The advantage of that approach is that often uniform persistence can be shown much more easily than the existence of a globally attracting equilibrium. The disadvantage is that most techniques for establishing uniform persistence do not provide any information on the size or location of the attracting set. That is a serious drawback from the applied viewpoint, because if the positive attracting set contains points that represent less than one individual of some species, then the practical interpretation that uniform persistence predicts coexistence may not be valid. An alternative approach is to seek asymptotic lower bounds on the populations or densities in the model, via comparison with simpler equations whose dynamics are better known. If such bounds can be obtained and approximately computed, then the prediction ofpersistence can be made practical rather than merely theoretical. This paper describes how practical persistence can be established for some classes of reaction–diffusion models for interacting populations. Somewhat surprisingly, themodels need not be autonomous or have any specific monotonicity properties.
A characteristic wavelength and its parametric dependency are studied for planar interfaces of activator-inhibitor systems as well as their stability in two-dimensional space. When an unstable planar interface is slightly perturbed in a random way, it develops with a characteristic wavelength, that is, the fastest-growing one. A natural question is to ask under what conditions this characteristic wavelength remains finite and approaches a positive definite value as the width of interface, say ε, tends to zero. In this paper, we show that the fastest-growing wavelength has a positive limit value as ε tends to zero for the system:
This is a fundamental fact for stuyding the domain size of patterns in higher-space dimensions.
We consider the homogenisation of transport kinetic equations with a highly periodic oscillating external field. The external field, acting on the particles, consists of a sum of a field deriving from a periodic potential and a bounded periodic perturbation. For the profile function generated by the oscillating solution of the problem, we derive a kinetic model with transmission boundary conditions in the energy variable. In some cases, for example when the field is not perturbed, we deduce a transport kinetic equation with memory effect satisfied by the weak-* limit of the sequence of solutions.
This paper generalises the notion of two-scale convergence to the case of multiple separated scales of periodic oscillations. It allows us to introduce a multi-scale convergence method for the reiterated homogenisation of partial differential equations with oscillating coefficients. This new method is applied to a model problem with a finite or infinite number of microscopic scales, namely the homogenisation of the heat equation in a composite material. Finally, it is generalised to handle the homogenisation of the Neumann problem in a perforated domain.
We study variational problems for the functional F(u) = ∫Ω f(x, u(x), Lu(x)) dx where u∈uo + V, with Vbeing any closed linear subspace of W2.P(Ω) containing W2.p.0(Ω), Ω is a bounded open set, p > 1, L is a differential operator of second order. We determine the greatest lower semicontinuous function majorised by F for the weak topology of W2.p, for its sequential version if f satisfies no coercivity assumption, showing that in both cases the relaxed functional is expressed in terms of the function ξ↦ f**(x, u, ξ). Finally, an existence result in case f (not necessarily convex) depending only on the Laplacian, is given
The aim of this paper is to characterise sets of anisotropic weighted capacity zero. In this we generalise previous known results for the isotropic equivalent. A particular case of this zero capacity set is used to generalise removable singularity results for weak solutions of degenerate quasilinear parabolic equations and for their elliptic equivalent when its structure is still essentially isotropic, with the anisotropy confined to the mixed norms of the generalised Lebesgue spaces involved.
V. B. Stanojevic suggested in her recent paper that it would be of interest to prove a corresponding L1-convergence theorem for Fourier series with complex O-regularly varying quasimonotonc coefficients. The present paper will discuss this question and establish L1-convergence and. furthermore. L1-approximation theorems for complex-valued integrable functions.
A Banach space operator has property (δ) if and only if it is the quotient of a decomposable operator, equivalently, if and only if its adjoint has Bishop's property (β). Within this class of operators, it is shown that quasisimilarity preserves essential spectra.
We present an elementary proof of the theorem, usually attributed to Noether, that if L/K is a tame finite Galois extension of local fields, then is a free -module where Γ=Gal(L/K. The attribution to Noether is slightly misleading as she only states and proves the result in the case where the residual characteristic of K does not divide the order of Γ [4]. In this case is a maximal order in KΓ which is not true for general groups Γ. There is an elegant proof in the standard reference [2], but this relies on a difficult result in representation theory due to Swan. Our proof depends on a close examination of the structure of tame local extensions, and uses only elementary facts about local fields. It also gives an explicit construction of a generator element, and the same proof works both for localizations of number fields and of global function fields.
It is shown that the Cesàro averaging operatorℜα > – 1, satisfies an inequality which immediately implies that it is bounded on certain Hardy spaces including Hp, 0 < p < ∞. This answers an open question of Stempak, who introduced these operators and obtained their boundedness on Hp, 0 < p ≦ 2, for ℜα ≧ 0. The operator which is conjugate to on H2 is also shown to be bounded on Hp for 1 < p < ∞ and ℜα = – 1. This extends a result of Stempak who obtained this boundedness for 2 ≦ p≦ ∞ and ℜα ≧:0.
In this paper, we study a model of phase-field type for the kinetics of phase transitions which was considered by Halperin, Hohenberg and Ma and which includes the phase-field equations. We study the well-posedness of the corresponding initial boundary value problem in an open bounded subset in space dimension lower than or equal to 3 and prove that, under suitable conditions, the long-time behaviour of the solutions to this problem is described by a maximal attractor.
The mapping properties of the finite Hilbert-transform (respectively the Hilbert transform on the half axis) are studied. Invertibility, surjectivity, injectivity and bounded ness from below of the transform are characterised in general weighted spaces. The results are applied to the restriction of the operator with logarithmic kernel.
In this paper we characterise some closed tangential exceptional sets for Hardy–Sobolev spaces , αp = n, 1 < p ≦ 2, in terms of the annihilation of a nonisotropic Hausdorff measure.