To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Several energies measuring jump discontinuities of a unit length gradient field are considered and are called defect energies. The main example is a total variation I(φ) of the hessian of a function φ in a domain. It is shown that the distance function is the unique minimiser of I(φ) among all non-negative Lipschitz solutions of the eikonal equation |grad φ| = 1 with zero boundary data, provided that the domain is a two-dimensional convex domain. An example shows that the distance function is not a minimiser of I if the domain is noncovex. This suggests that the selection mechanism by I is different from that in the theory of viscosity solutions in general. It is often conjectured that the minimiser of a defect energy is a distance function if the energy is formally obtained as a singular limit of some variational problem. Our result suggests that this conjecture is very subtle even if it is true.
In this paper we calculate the localisation at the prime 3 of the integral cohomology ring of the Mathieu group M24, together with its mod-3 cohomology ring. The main results are
Theorem 1. The ring H*(M24, Z)(3)is the commutative graded Z(3)-algebra with generators
and relations v2 = 0 and βθ = 0. The Chern classes of the Todd representation in GL11F2
We consider convolution operators arising in the study of abstract initial boundary value problems. These operators are of the form
where {S(t)}t ≧0 is a C0-semigroup in a Banach space X,, with infinitesimal generator A0,: D(A0), ⊂ X, → X, and K(z): Y → X is a linxear, continuous mapping defined in another Banach space Y., We study the continuity of T between the spaces Lp([0, + ∞), Y), and Lq([0, + ∞), X), 1 ≦ p, q, ≦ + ∞. We give several examples of the applicability of the results to some familiar initial boundary value problems, including both parabolic and hyperbolic cases.
We show that an energy decay ∥u(t)∥2 = O(t−µ) for solutions of the Navier–Stokes equations on ℝn, n ≦ 5, implies a decay of the higher order norms, e.g. ∥Dα u(t)∥2 = O(t−µ −|α|/2) and ∥u(t)|∞ = O(t−µ −n/4).
Let R be a ring with identity and let Eij ∈ Mn(R) be the usual n X n matrix units, where n ≥ 2 and 1≤i, j≤N. Let En(R) be the subgroup of GLn(R) generated by all Tij(q where r ∈ R and i ≄ j. For each (two-sided) R-ideal q let En(R, q) be the normal subgroup of En(R) generated by Tij(q), where q ∈ q. The subgroup En(R, q) plays an important role in the theory of GLn(R). For example, Vaserˇstein has proved that, for a larger class of rings (which includes all commutative rings), every subgroup S of GLn(R), when R ∈ and n≥3, contains the subgroup En(R, q0), where q0 is the R-ideal generated by αij, rαij-αjjr (i ≄ j, r ∈ R), for all (αij) ∈ S. (See [13, Theorem 1].) In addition Vaseršstein has shown that, for the same class of rings, En(R, q) has a simple set of generators when n ≥ 3. Let Ên(R, q) be the subgroup of En(R, q) generated by Tij(r)Tij(q)Tij(−r), where r ∈ R, q ∈ q. Then Ên(R, q) = En(R, q), for all q, when R ∈ and n ≥ 3.(See [13, Lemma 8].)
In this paper, a sufficient condition (H) is given on initial values for which there is a unique smooth global in time solution of the initial value problem for a special nonisentropic gas dynamics system.
If E is a Hausdorff locally convex space and M is an -dimensional subspace of the algebraic dual E* that is transverse to the continuous dual E′, then, according to [7], the Mackey topology τ(E, E′ + M) is a countable enlargement (CE) of τ(E, E′) [or of E]. Much is still unknown as to when CEs preserve barrelledness (cf. [14]). E is quasidistinguished (QD) if each bounded subset of the completion Ê is contained in the completion of a bounded subset of E [12]. Clearly, each normed space is QD, and Tsirulnikov [12] asked if each CE of a normed space must be a QDCE, i.e., must preserve the QD property. Since CEs preserve metrizability (but not normability), her question was whether metrizable spaces so obtained must be QD, and was moderated by Amemiya's negative answer (cf. [5, p. 404]) to Grothendieck's query, who had asked if all metrizable spaces are QD, having proved the separable ones are [4].
We propose here a way to extend to all the 1-set of ℝ2 the well-known affine length which was just defined for a C2 curve. Moreover, this leads us to define the affine dimension of a 1-set which can be used for discriminate rectifiable 1-sets from unrectifiable 1-sets of ℝ2.
In a previous paper, B.-Y. Chen defined a Riemannian invariant δ by subtracting from the scalar curvature at every point of a Riemannian manifold the smallest sectional curvature at that point, and proved, for a submanifold of a real space form, a sharp inequality between δ and the mean curvature function. In this paper, we extend this inequality to totally real submanifolds of a complex space form. As a consequence, we obtain a metric obstruction for a Riemannian manifold Mn to admit a minimal totally real (i.e. Lagrangian) immersion into a complex space form of complex dimension n. Next we investigate three-dimensional submanifolds of the complex projective space ℂP3 which realise the equality in the inequality mentioned above. In particular, we construct and characterise a totally real minimal immersion of S3 in ℂP3.
We study the existence and asymptotic behaviour of positive solutions of a semilinear elliptic equation in entire space. A special case of this equation is the scalar curvature equation which arises in Riemannian geometry.
Let denote a subring of the complex field that contains 1 and is closed under complex conjugation. It is shown that, with respect to the involution induced by word-reversal, the algebra over of a free monoid admits a trace and a separating family of star matrix representations. From the existence of a trace it is deduced that the aforementioned involution is special, in the sense of Easdown and Munn. Similar results hold for the algebra over of a free monoid with involution.
Let S be a semigroup and let be an S-graded ring. Rs = 0 for all but finitely many elements s ∈ S1, then R is said to have finite support. In this paper we concern ourselves with the question of whether a graded ring R with finite support inherits a given ring theoretic property from the homogeneous subrings Re corresponding to idempotent semigroup elements e.
Suppose H is a Hilbert space and write ℒ(H) for the set of all bounded linear operators on H. If T ∈ ℒ(H) we write σ(T) for the spectrum of T; π0(T) for the set of eigenvalues of T; and π00(T) for the isolated points of σ(T) that are eigenvalues of finite multiplicity. If K is a subset of C, we write iso K for the set of isolated points of K. An operator T ∈ ℒ(H) is said to be Fredholm if both T−1(0) and T(H)⊥ are finite dimensional. The index of a Fredholm operator T, denoted by index(T), is defined by
The rigorous definition of time-ordered exponentials, solving quantum linear stochastic differential equations, is extended to Boson and Fermion stochastic calculi with infinitely many degrees of freedom. The relation to the classicalmultiplicative stochastic integral, solving the Doleans exponential equation, is discussed.
In this paper the initial value problem for a class of Zakharov equations arising from ion-acoustic modes is discussed. Without assuming the Cauchy data are small, we prove the existence and uniqueness of the global smooth solution for the problem via the so-called continuous method and delicate a priori estimates.