To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The following question of V. Stakhovskii was passed to us by N. Dolbilin [4]. Take the barycentric subdivision of a triangle to obtain six triangles, then take the barycentric subdivision of each of these six triangles and so on; is it true that the resulting collection of triangles is dense (up to similarities) in the space of all triangles? We shall show that it is, but that, nevertheless, the process leads almost surely to a flat triangle (that is, a triangle whose vertices are collinear).
We present a new characterization of σ-fragmentability and illustrate its usefulness by proving some results relating analyticity and crfragmentability. We show, for instance, that a Banach space with the weak topology is σ-fragmented if, and only if, it is almost Čech-analytic and that an almost Čech-analytic topological space is σ-fragmented by a lower-semicontinuous metric if, and only if, each compact subset of the space is fragmented by the metric.
Throughout this paper we assume that k is a given positive integer. As usual, B(x, r) denotes the closed ball with centre at x∈ℝk and radius r > 0. Let μ be a Radon measure on ℝk, that is, μ is locally finite and Borel regular. For s ≥ 0, the lower and upper s–dimensional densities of μ at x are denned respectively by
The distribution of squarefree binomial coefficients. For many years, Paul Erdős has asked intriguing questions concerning the prime divisors of binomial coefficients, and the powers to which they appear. It is evident that, if k is not too small, then must be highly composite in that it contains many prime factors and often to high powers. It is therefore of interest to enquire as to how infrequently is squarefree. One well-known conjecture, due to Erdős, is that is not squarefree once n > 4. Sarközy [Sz] proved this for sufficiently large n but here we return to and solve the original question.
An asymptotic theory is developed for a class of fourth-order differential equations. Under a general conditions on the coefficients of the differential equation we obtained the forms of the asymptotic solutions such that the solutions have different orders of magnitude for large x.
Recently Bombieri and Sperber have jointly created a new construction for estimating exponential sums on quasiprojective varieties over finite fields. In this paper we apply their construction to estimate hybrid exponential sums on quasiprojective varieties over finite fields. In doing this we utilize a result of Aldolphson and Sperber concerning the degree of the L-function associated with a certain exponential sum.
Let be a sequence of mutually disjoint open balls, with centres xj and corresponding radii aj, each contained in the closed unit ball in d-dimensional euclidean space, ℝd. Further we suppose, for simplicity, that the balls Bj are indexed so that aj≥aj+1. The set
obtained by removing, from the balls {Bj} is called the residual set. We say that the balls {Bj} constitute a packing of provided that λ(ℛ)=0, where λ denotes the d-dimensional Lebesgue measure. Thus it follows that henceforth denoted by c(d), whilst the packing restraint ensures that Larman [11] has noted that, under these circumstances, one also has .
This paper depends on results of Baranovskii [1], [2]. The covering radius R(L) of an n-dimensional lattice L is the radius of smallest balls with centres at points of L which cover the whole space spanned by L. R(L) is closely related to minimal vectors of classes of the quotient . The convex hull of all minimal vectors of a class Q is a Delaunay polytope P(Q) of dimension ≤, dimension of L. Let be a maximal squared radius of P(Q) of dimension n (of dimension less than n, respectively). If , then . This is the case in the well-known Barnes-Wall and Leech lattices. Otherwise, . This is a refinement of a result of Norton ([3], Ch. 22).
In the first part of the paper we show that the L2-discrepancy with respect to squares is of the same order of magnitude as the usual L2- discrepancy for point distributions in the K-dimensional torus. In the second part we adapt this method to obtain a generalization of Roth's [7] lower bound (log N)(k-1)/2 (for the usual discrepancy) to the discrepancy with respect to homothetic simple convex poly topes.
Let K be a number field of degree nK = r1 + 2r2, a fixed integral ideal and the group of fractional ideals of K whose prime decomposition contains no prime factors of . Let
and be an arbitrary Groessencharaktere mod f as defined in [15]. Then and, for
where {λi} forms a basis for the torsion–free characters on whose value on any depends only on the that exists such that a = (α). Note that because of the choice in such an α we have that 1 for all units ε in K satisfying (mod ), ε>0. Also, x is a narrow ideal class character mod , that is, a character on
This paper studies higher dimensional analogues of the Tamari lattice on triangulations of a convex n-gon, by placing a partial order on the triangulations of a cyclic d-polytope. Our principal results are that in dimension d≤3, these posets are lattices whose intervals have the homotopy type of a sphere or ball, and in dimension d≤5, all triangulations of a cyclic d-polytope are connected by bistellar operations.
Let R be a real closed field and a variety of real dimension k′ which is the zero set of a polynomial Q∈R[X1,…, Xk] of degree at most d. Given a family of s polynomials = {P1,…, Ps}⊂R[X1,…,Xk] where each polynomial in has degree at most d, we prove that the number of cells defined by over is (O(d))k Note that the combinatorial part of the bound depends on the dimension of the variety rather than on the dimension of the ambient space.
Let K/Kobe a finitely generated field extension of transcendence degree 1. Let u0 be a valuation of Koand v a valuation of Kextending v0such that the residue field of vis a transcendental extension ofthe residue field k0of vo/such a prolongation vwill be called a residually transcendental prolongation of v0. Byan element with the uniqueness propertyfor (K, v)/(K0, v0) (or more briefly for v/v0)we mean an element / of Khaving u-valuation 0 which satisfies (i) the image of tunder the canonicalhomomorphism from the valuation ring of vonto the residue field of v(henceforth referred to as the v-residue ot t) is transcendental over ko; that is vcoincides with the Gaussian valuation on the subfield K0(t) defined by (ii) vis the only valuation of K (up to equivalence) extending the valuation .
Let G be a compact Lie group and X a G-CW complex. We are interested in the calculation of the Borel cohomology of X
where EG is a universal free G-space and we use on the right hand side cellular cohomology. For an introduction to G-CW complexes see Matumoto [4] and for a good exposition on Borel cohomology see for instance torn Dieck [2], We want to replace X with an ordinary CW complex Y in order to find an ordinary CW structure on the Borel construction EG ΧGY so we can use cellular chains to compute the Borel cohomology of X. For every compact Lie group one has an extension
where G0 is the identity component, so for our case G0 is isomorphic to the circle group . We are dealing with the case in which π0(G) is isomorphic to C2, the cyclic group of order
Lemma. Let a, b and c be positive integers such that a and be are relatively prime. Then there are infinitely many primes p in the arithmetic progression ax + b (x = 0,1,2,…) such that