To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Written by leaders in the field, this text showcases some of the remarkable properties of the finite Toda lattice and applies this theory to establish universality for the associated Toda eigenvalue algorithm for random Hermitian matrices. The authors expand on a 2019 course at the Courant Institute to provide a comprehensive introduction to the area, including previously unpublished results. They begin with a brief overview of Hamiltonian mechanics and symplectic manifolds, then derive the action-angle variables for the Toda lattice on symmetric matrices. This text is one of the first to feature a new perspective on the Toda lattice that does not use the Hamiltonian structure to analyze its dynamics. Finally, portions of the above theory are combined with random matrix theory to establish universality for the runtime of the associated Toda algorithm for eigenvalue computation.
We study constant Q-curvature metrics conformal to the the round metric on the sphere with finitely many point singularities. We show that the moduli space of solutions with finitely many punctures in fixed positions, equipped with the Gromov–Hausdorff topology, has the local structure of a real algebraic variety with formal dimension equal to the number of the punctures. If a nondegeneracy hypothesis holds, we show that a neighbourhood in the moduli spaces is actually a smooth, real-analytic manifold of the expected dimension. We also construct a geometrically natural set of parameters, construct a symplectic structure on this parameter space and show that in the smooth case a small neighbourhood of the moduli space embeds as a Lagrangian submanifold in the parameter space. We remark that our construction of the symplectic structure is quite different from the one in the scalar curvature setting, due to the fact that the associated partial differential equation is fourth-order rather than second-order.
We give a construction of integral local Shimura varieties which are formal schemes that generalise the well-known integral models of the Drinfeld p-adic upper half spaces. The construction applies to all classical groups, at least for odd p. These formal schemes also generalise the formal schemes defined by Rapoport-Zink via moduli of p-divisible groups, and are characterised purely in group-theoretic terms.
More precisely, for a local p-adic Shimura datum $(G, b, \mu)$ and a quasi-parahoric group scheme ${\mathcal {G}} $ for G, Scholze has defined a functor on perfectoid spaces which parametrises p-adic shtukas. He conjectured that this functor is representable by a normal formal scheme which is locally formally of finite type and flat over $O_{\breve E}$. Scholze-Weinstein proved this conjecture when $(G, b, \mu)$ is of (P)EL type by using Rapoport-Zink formal schemes. We prove this conjecture for any $(G, \mu)$ of abelian type when $p\neq 2$, and when $p=2$ and G is of type A or C. We also relate the generic fibre of this formal scheme to the local Shimura variety, a rigid-analytic space attached by Scholze to $(G, b, \mu , {\mathcal {G}})$.
We construct a model for the (non-unital) S1-framed little 2d-dimensional disks operad for any positive integer d using logarithmic geometry. We also show that the unframed little 2d-dimensional disks operad has a model which can be constructed using log schemes with virtual morphisms.
We establish a polynomial ergodic theorem for actions of the affine group of a countable field K. As an application, we deduce—via a variant of Furstenberg’s correspondence principle—that for fields of characteristic zero, any ‘large’ set $E\subset K$ contains ‘many’ patterns of the form $\{p(u)+v,uv\}$, for every non-constant polynomial $p(x)\in K[x]$. Our methods are flexible enough that they allow us to recover analogous density results in the setting of finite fields and, with the aid of a finitistic variant of Bergelson’s ‘colouring trick’, show that for $r\in \mathbb N$ fixed, any r-colouring of a large enough finite field will contain monochromatic patterns of the form $\{u,p(u)+v,uv\}$. In a different direction, we obtain a double ergodic theorem for actions of the affine group of a countable field. An adaptation of the argument for affine actions of finite fields leads to a generalization of a theorem of Shkredov. Finally, to highlight the utility of the aforementioned finitistic ‘colouring trick’, we provide a conditional, elementary generalization of Green and Sanders’ $\{u,v,u+v,uv\}$ theorem.
We define a family of discontinuous maps on the circle, called Bowen–Series-like maps, for geometric presentations of surface groups. The family has $2N$ parameters, where $2N$ is the number of generators of the presentation. We prove that all maps in the family have the same topological entropy, which coincides with the volume entropy of the group presentation. This approach allows a simple algorithmic computation of the volume entropy from the presentation only, using the Milnor–Thurston theory for one-dimensional maps.
We establish large deviation estimates related to the Darling–Kac theorem and generalized arcsine laws for occupation and waiting times of ergodic transformations preserving an infinite measure, such as non-uniformly expanding interval maps with indifferent fixed points. For the proof, we imitate the study of generalized arcsine laws for occupation times of one-dimensional diffusion processes and adopt a method of double Laplace transform.
We prove that for every relatively prime pair of integers $(d,r)$ with $r>0$, there exists an exceptional pair $({\mathcal {O}},V)$ on any del Pezzo surface of degree $4$, such that V is a bundle of rank r and degree d. As an application, we prove that every Feigin-Odesskii Poisson bracket on a projective space can be included into a $5$-dimensional linear space of compatible Poisson brackets. We also construct new examples of linear spaces of compatible Feigin-Odesskii Poisson brackets of dimension $>5$, coming from del Pezzo surfaces of degree $>4$.
We consider the Schrödinger equation on the one dimensional torus with a general odd-power nonlinearity $p \geq 5$, which is known to be globally well-posed in the Sobolev space $H^\sigma(\mathbb{T})$, for every $\sigma \geq 1$, thanks to the conservation and finiteness of the energy. For regularities σ < 1, where this energy is infinite, we explore a globalization argument adapted to random initial data distributed according to the Gaussian measures µs, with covariance operator $(1-\Delta)^s$, for s in a range $(s_p,\frac{3}{2}]$. We combine a deterministic local Cauchy theory with the quasi-invariance of Gaussian measures µs, with additional Lq-bounds on the Radon-Nikodym derivatives, to prove that the Gaussian initial data generate almost surely global solutions. These Lq-bounds are obtained with respect to Gaussian measures accompanied by a cutoff on a renormalization of the energy; the main tools to prove them are the Boué-Dupuis variational formula and a Poincaré-Dulac normal form reduction. This approach is similar in spirit to Bourgain’s invariant argument [7] and to arecent work by Forlano-Tolomeo in [18].
Mathematical billiards is much like the real game: a point mass, representing the ball, rolls in a straight line on a (perfectly friction-less) table, striking the sides according to the law of reflection. A billiard trajectory is then completely characterized by the number of elastic collisions. The rules of mathematical billiards may be simple, but the possible behaviours of billiard trajectories are endless. In fact, several fundamental theory questions in mathematics can be recast as billiards problems. A billiard trajectory is called a periodic orbit if the number of distinct collisions in the trajectory is finite. We show that periodic orbits on such billiard tables cannot have an odd number of distinct collisions. We classify all possible equivalence classes of periodic orbits on square and rectangular tables. We also present a connection between the number of different equivalence classes and Euler’s totient function, which for any positive integer N, counts how many positive integers smaller than N share no common divisor with N other than $1$. We explore how to construct periodic orbits with a prescribed (even) number of distinct collisions and investigate properties of inadmissible (singular) trajectories, which are trajectories that eventually terminate at a vertex (a table corner).
Let $W_{\mathrm {aff}}$ be an extended affine Weyl group, $\mathbf {H}$ be the corresponding affine Hecke algebra over the ring $\mathbb {C}[\mathbf {q}^{\frac {1}{2}}, \mathbf {q}^{-\frac {1}{2}}]$, and J be Lusztig’s asymptotic Hecke algebra, viewed as a based ring with basis $\{t_w\}$. Viewing J as a subalgebra of the $(\mathbf {q}^{-\frac {1}{2}})$-adic completion of $\mathbf {H}$ via Lusztig’s map $\phi $, we use Harish-Chandra’s Plancherel formula for p-adic groups to show that the coefficient of $T_x$ in $t_w$ is a rational function of $\mathbf {q}$, with denominator depending only on the two-sided cell containing w, and dividing a power of the Poincaré polynomial of the finite Weyl group. As an application, we conjecture that these denominators encode more detailed information about the failure of the Kazhdan-Lusztig classification at roots of the Poincaré polynomial than is currently known.
Along the way, we show that upon specializing $\mathbf {q}=q>1$, the map from J to the Harish-Chandra Schwartz algebra is injective. As an application of injectivity, we give a novel criterion for an Iwahori-spherical representation to have fixed vectors under a larger parahoric subgroup in terms of its Kazhdan-Lusztig parameter.
Given a finite abelian group $G$ and $t\in \mathbb{N}$, there are two natural types of subsets of the Cartesian power $G^t$; namely, Cartesian powers $S^t$ where $S$ is a subset of $G$ and (cosets of) subgroups $H$ of $G^t$. A basic question is whether two such sets intersect. In this paper, we show that this decision problem is NP-complete. Furthermore, for fixed $G$ and $S$, we give a complete classification: we determine conditions for when the problem is NP-complete and show that in all other cases the problem is solvable in polynomial time. These theorems play a key role in the classification of algebraic decision problems in finitely generated rings developed in later work of the author.
Let $\{u_n\}_n$ be a nondegenerate linear recurrence sequence of integers with Binet’s formula given by ${u_n= \sum _{i=1}^{m} P_i(n)\alpha _i^n.}$ Assume $\max _i \vert \alpha _i \vert>1$. In 1977, Loxton and Van der Poorten conjectured that for any $\epsilon>0$, there is an effectively computable constant $C(\epsilon )$ such that if $ \vert u_n \vert < (\max _i\{ \vert \alpha _i \vert \})^{n(1-\epsilon )}$, then $n<C(\epsilon )$. Using results of Schmidt and Evertse, a complete noneffective (qualitative) proof of this conjecture was given by Fuchs and Heintze [‘On the growth of linear recurrences in function fields’, Bull. Aust. Math. Soc.104(1) (2021), 11–20] and, independently, by Karimov et al. [‘The power of positivity’, Proc. LICS23 (2023), 1–11]. In this paper, we give an effective upper bound for the number of solutions of the inequality $\vert u_n \vert < (\max _i\{ \vert \alpha _i \vert \})^{n(1-\epsilon )}$, thus extending several earlier results by Schmidt, Schlickewei and Van der Poorten.
For full shifts on finite alphabets, Coelho and Quas [Criteria for $\overline {d}$-continuity. Trans. Amer. Math. Soc.350(8) (1998), 3257–3268] showed that the map that sends a Hölder continuous potential $\phi $ to its equilibrium state $\mu _\phi $ is $\overline {d}$-continuous. We extend this result to the setting of full shifts on countable (infinite) alphabets. As part of the proof, we show that the map that sends a strongly positive recurrent potential to its normalization is continuous for potentials on mixing countable state Markov shifts.
In this paper, we first describe the cohomology theory of Lie supertriple systems by using the cohomology theory of the associated Leibniz superalgebras. Then we focus on Lie supertriple systems with superderivations, called LSTSDer pairs. We introduce the notion of representations of LSTSDer pairs and investigate their corresponding cohomology theory. We also construct a differential graded Lie algebra whose Maurer–Cartan elements are LSTSDer pairs. Moreover, we consider the relationship between a LSTSDer pair and the associated LeibSDer pair. Furthermore, we develop the 1-parameter formal deformation theory of LSTSDer pairs and prove that it is governed by the cohomology groups. At last, we study abelian extensions of LSTSDer pairs and show that equivalent abelian extensions of LSTSDer pairs are classified by the third cohomology groups.
In this paper, we show that for any nonautonomous discrete time dynamical system in a Banach space if its linear part has a dichotomy and the composition of a generalized Green function and the nonlinear term of the system has a weighted integrable Lipschitz constant then the system has the weighted Lipschitz shadowing property for a type of weighted pseudo orbits in the whole phase space. Additionally, if the generalized Green function is the Green function for the dichotomy and the evolution operator restricted to the stable subspace (resp. unstable subspace) tends to 0 in weight as time tends to $+\infty$ (resp. $-\infty$) then the system has the weighted generalized forward (resp. backward) limit shadowing property. By the same approach we prove that a C1 map with a compact hyperbolic invariant set has the weighted Lipschitz shadowing property and the generalized weighted limit shadowing property for weighted pseudo orbits in the hyperbolic set. We also give the parallel results for differential equations.
We prove that the non-properness set of a local homeomorphism $\mathbb R^n \to \mathbb R^n$ cannot be ambient homeomorphic to an affine subspace of dimension n − 2. This particularly provides a partial positive answer to a conjecture of Jelonek, that claims the global invertibility of polynomial local diffeomorphisms having non-properness set with codimension greater than 1. Our reasons to obtain this result lead us to some properties of the non-properness set when it has codimension 2, the heart of Jelonek’s conjecture. We also provide a global injectivity theorem related to this conjecture that turns out to generalize previous results of the literature.