To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A family of arbitrarily high-order energy-preserving methods are developed to solve the coupled Schrödinger–Boussinesq (S-B) system. The system is a nonlinear coupled system and satisfies a series of conservation laws. It is often difficult to construct a high-order decoupling numerical algorithm to solve the nonlinear system. In this paper, the original system is first reformulated into an equivalent Hamiltonian system by introducing multiple auxiliary variables. Next, the reformulated system is discretized by the Fourier pseudo-spectral method and the implicit midpoint scheme in the spatial and temporal directions, respectively, and a second-order conservative scheme is obtained. Finally, the scheme is extended to arbitrarily high-order accuracy by means of diagonally implicit symplectic Runge–Kutta methods or composition methods. Rigorous analyses show that the proposed methods are fully decoupled and can precisely conserve the discrete invariants. Numerical results show that the proposed schemes are effective and can be easily extended to other nonlinear partial differential equations.
We establish the higher fractional differentiability for the minimizers of non-autonomous integral functionals of the form
\begin{align*}\mathcal{F}(u,\Omega):=\int_\Omega \left[ f(x,Du)- g \cdot u \right] dx ,\end{align*}
under (p, q)-growth conditions. Besides a suitable differentiability assumption on the partial map $x \mapsto D_\xi f(x,\xi)$, we do not need to assume any differentiability assumption on the function g.
We investigate the Lorentzian analogues of Riemannian Bianchi–Cartan–Vranceanu spaces. We provide their general description and emphasize their role in the classification of three-dimensional homogeneous Lorentzian manifolds with a four-dimensional isometry group. We then illustrate their geometric properties (with particular regard to curvature, Killing vector fields and their description as Lorentzian Lie groups) and we study several relevant classes of surfaces (parallel, totally umbilical, minimal, constant mean curvature) in these homogeneous Lorentzian three-manifolds.
We investigate the consequences of periodic, on–off glucose infusion on the glucose–insulin regulatory system based on a system-level mathematical model with two explicit time delays. Studying the effects of such infusion protocols is mathematically challenging yet a promising direction for probing the system response to infusion. We pay special attention to the interplay of periodic infusion with intermediate-time-scale, ultradian oscillations that arise as a result of the physiological response of glucose uptake and back-release into the bloodstream. By using numerical solvers and numerical continuation software, we investigate the response of the model to different infusion patterns, explore how these patterns affect the overall levels of glucose and insulin, and how this can lead to entrainment. By doing so, we provide a road-map of system responses that can potentially help identify new, less-invasive, test strategies for detecting abnormal responses to glucose uptake without falling into lockstep with the infusion pattern.
Let $\mu _{M,D}$ be the self-similar measure generated by $M=RN^q$ and the product-form digit set $D=\{0,1,\ldots ,N-1\}\oplus N^{p_1}\{0,1,\ldots ,N-1\}\oplus \cdots \oplus N^{p_s}\{0,1,\ldots ,N-1\}$, where $R\geq 2$, $N\geq 2$, q, $p_i(1\leq i\leq s)$ are integers with $\gcd (R,N)=1$ and $1\leq p_1<p_2<\cdots <p_s<q$. In this paper, we first show that $\mu _{M,D}$ is a spectral measure with a model spectrum $\Lambda $. Then, we completely settle two types of spectral eigenvalue problems for $\mu _{M,D}$. In the first case, for a real t, we give a necessary and sufficient condition under which $t\Lambda $ is also a spectrum of $\mu _{M,D}$. In the second case, we characterize all possible real numbers t such that $\Lambda '\subset \mathbb {R}$ and $t\Lambda '$ are both spectra of $\mu _{M,D}$.
Let S and T be smooth projective varieties over an algebraically closed field k. Suppose that S is a surface admitting a decomposition of the diagonal. We show that, away from the characteristic of k, if an algebraic correspondence $T \to S$ acts trivially on the unramified cohomology, then it acts trivially on any normalized, birational and motivic functor. This generalizes Kahn’s result on the torsion order of S. We also exhibit an example of S over $\mathbb {C}$ for which $S \times S$ violates the integral Hodge conjecture.
In this article, we study the Johnson homomorphisms of basis-conjugating automorphism groups of free groups. We construct obstructions for the surjectivity of the Johnson homomorphisms. By using it, we determine their cokernels of degree up to four and give further observations for degree greater than four. As applications, we give the affirmative answer to the Andreadakis problem for the basis-conjugating automorphism groups of free groups at degree four. Moreover, we calculate twisted first cohomology groups of the braid-permutation automorphism groups of free groups.
Given a Hamiltonian torus action on a symplectic manifold, Teleman and Fukaya have proposed that the Fukaya category of each symplectic quotient should be equivalent to an equivariant Fukaya category of the original manifold. We lay out new conjectures that extend this story – in certain situations – to singular values of the moment map. These include a proposal for how, in some cases, we can recover the non-equivariant Fukaya category of the original manifold starting from data on the quotient.
To justify our conjectures, we pass through the mirror and work out numerous examples, using well-established heuristics in toric mirror symmetry. We also discuss the algebraic and categorical structures that underlie our story.
We construct an fpqc gerbe $\mathcal {E}_{\dot {V}}$ over a global function field F such that for a connected reductive group G over F with finite central subgroup Z, the set of $G_{\mathcal {E}_{\dot {V}}}$-torsors contains a subset $H^{1}(\mathcal {E}_{\dot {V}}, Z \to G)$ which allows one to define a global notion of (Z-)rigid inner forms. There is a localization map $H^{1}(\mathcal {E}_{\dot {V}}, Z \to G) \to H^{1}(\mathcal {E}_{v}, Z \to G)$, where the latter parametrizes local rigid inner forms (cf. [8, 6]) which allows us to organize local rigid inner forms across all places v into coherent families. Doing so enables a construction of (conjectural) global L-packets and a conjectural formula for the multiplicity of an automorphic representation $\pi $ in the discrete spectrum of G in terms of these L-packets. We also show that, for a connected reductive group G over a global function field F, the adelic transfer factor $\Delta _{\mathbb {A}}$ for the ring of adeles $\mathbb {A}$ of F serving an endoscopic datum for G decomposes as the product of the normalized local transfer factors from [6].
where $\nabla\times$ denotes the usual curl operator in $\mathbb{R}^3$, $\mu_1,\mu_2 \gt 0$, and $\beta\in\mathbb{R}\backslash\{0\}$. We show that this critical system admits a non-trivial ground state solution when the parameter β is positive and small. For general $\beta\in\mathbb{R}\backslash\{0\}$, we prove that this system admits a non-trivial cylindrically symmetric solution with the least positive energy. We also study the existence of the curl-free solution and the synchronized solution due to the special structure of this system. These seem to be the first results on the critically coupled system containing the curl-curl operator.
In this article, we investigate the possibility of generating all the configurations of a subshift in a local way. We propose two definitions of local generation, explore their properties and develop techniques to determine whether a subshift satisfies these definitions. We illustrate the results with several examples.
We establish two complementary results about the regularity of the solution of the periodic initial value problem for the linear Benjamin–Ono equation. We first give a new simple proof of the statement that, for a dense countable set of the time variable, the solution is a finite linear combination of copies of the initial condition and of its Hilbert transform. In particular, this implies that discontinuities in the initial condition are propagated in the solution as logarithmic cusps. We then show that, if the initial condition is of bounded variation (and even if it is not continuous), for almost every time the graph of the solution in space is continuous but fractal, with upper Minkowski dimension equal to $\frac32$. In order to illustrate this striking dichotomy, in the final section, we include accurate numerical evaluations of the solution profile, as well as estimates of its box-counting dimension for two canonical choices of irrational time.
We give a notion of boundary pair $(\mathcal{B}_-,\mathcal{B}_+)$ for measured groupoids which generalizes the one introduced by Bader and Furman [BF14] for locally compact groups. In the case of a semidirect groupoid $\mathcal{G}=\Gamma \ltimes X$ obtained by a probability measure preserving action $\Gamma \curvearrowright X$ of a locally compact group, we show that a boundary pair is exactly $(B_- \times X, B_+ \times X)$, where $(B_-,B_+)$ is a boundary pair for $\Gamma$. For any measured groupoid $(\mathcal{G},\nu )$, we prove that the Poisson boundaries associated to the Markov operators generated by a probability measure equivalent to $\nu$ provide other examples of our definition. Following Bader and Furman [BF], we define algebraic representability for an ergodic groupoid $(\mathcal{G},\nu )$. In this way, given any measurable representation $\rho \,:\,\mathcal{G} \rightarrow H$ into the $\kappa$-points of an algebraic $\kappa$-group $\mathbf{H}$, we obtain $\rho$-equivariant maps $\mathcal{B}_\pm \rightarrow H/L_\pm$, where $L_\pm =\mathbf{L}_\pm (\kappa )$ for some $\kappa$-subgroups $\mathbf{L}_\pm \lt \mathbf{H}$. In the particular case when $\kappa =\mathbb{R}$ and $\rho$ is Zariski dense, we show that $L_\pm$ must be minimal parabolic subgroups.
Several classical knot invariants, such as the Alexander polynomial, the Levine-Tristram signature, and the Blanchfield pairing, admit natural extensions from knots to links, and more generally, from oriented links to so-called colored links. In this note, we explore such extensions of the Arf invariant. Inspired by the three examples stated above, we use generalized Seifert forms to construct quadratic forms and determine when the Arf invariant of such a form yields a well-defined invariant of colored links. However, apart from the known case of oriented links, these new Arf invariants turn out to be determined by the linking numbers.
In [5], a particular family of real hyperplane arrangements stemming from hyperpolygonal spaces associated with certain quiver varieties was introduced which we thus call hyperpolygonal arrangements${\mathscr H}_n$. In this note, we study these arrangements and investigate their properties systematically. Remarkably, the arrangements ${\mathscr H}_n$ discriminate between essentially all local properties of arrangements. In addition, we show that hyperpolygonal arrangements are projectively unique and combinatorially formal.
We note that the arrangement ${\mathscr H}_5$ is the famous counterexample of Edelman and Reiner [17] of Orlik’s conjecture that the restriction of a free arrangement is again free.
We consider the two-dimensional nonlinear Schrödinger equation with point interaction and we establish a local well-posedness theory, including blow-up alternative and continuous dependence on the initial data in the energy space. We provide proof by employing Kato’s method along with Hardy inequalities with logarithmic correction. Moreover, we establish finite time blow-up for solutions with positive energy and infinite variance.
We establish that if α > 1 and $n\geq3$ or if $\alpha\in (1-\epsilon_0, 1)$ with $n=2m\geq4$, then $v_{\alpha}\equiv0$. As an application, we present a new proof of the classical Beckner inequality.
In this article, we prove the local-in-time existence of regular solutions to dissipative Aw–Rascle system with the offset equal to gradient of some increasing and regular function of density. It is a mixed degenerate parabolic-hyperbolic hydrodynamic model, and we extend the techniques previously developed for compressible Navier–Stokes equations to show the well-posedness of the system in the $L_2-L_2$ setting. We also discuss relevant existence results for offset involving singular or non-local functions of density.
This paper considers two commuting smooth transformations on a Banach space and proves the sub-additivity of the measure theoretic entropies under mild conditions. Furthermore, some additional conditions are given for the equality of the entropies. This extends Hu’s work [Some ergodic properties of commuting diffeomorphisms. Ergod. Th. & Dynam. Sys.13(1) (1993), 73–100] about commuting diffeomorphisms in a finite dimensional space to the case of systems on an infinite dimensional Banach space.
We consider one-parameter families of smooth circle cocycles over an ergodic transformation in the base, and show that their rotation numbers must be log-Hölder regular with respect to the parameter. As an immediate application, we get a dynamical proof of the one-dimensional version of the Craig–Simon theorem that establishes that the integrated density of states of an ergodic Schrödinger operator must be log-Hölder.