To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We present a method for reconstructing evolutionary trees from high-dimensional data, with a specific application to bird song spectrograms. We address the challenge of inferring phylogenetic relationships from phenotypic traits, like vocalizations, without predefined acoustic properties. Our approach combines two main components: Poincaré embeddings for dimensionality reduction and distance computation, and the neighbour-joining algorithm for tree reconstruction. Unlike previous work, we employ Siamese networks to learn embeddings from only leaf node samples of the latent tree. We demonstrate our method’s effectiveness on both synthetic data and spectrograms from six species of finches.
under the homogeneous Neumann boundary condition for u, vi and the homogeneous Dirichlet boundary condition for $\bf{w}$ in a smooth bounded domain $\Omega \subset {\mathbb{R}^n}\left( {n \geqslant 1} \right),$ where ρ > 0, µ > 0, α > 1 and $i=1,\ldots,k$. We reveal that when the index α, the spatial variable n, and the number of equations k satisfy certain relationships, the global solution of the system exists and converges to the constant equilibrium state in the form of exponential convergence.
In the second part of this series of papers, we address the same evolution problem that was considered in part 1 (see [16]), namely the nonlocal Fisher-KPP equation in one spatial dimension,
\begin{equation*} u_t = D u_{xx} + u(1-\phi *u), \end{equation*}
where $\phi *u$ is a spatial convolution with the top hat kernel, $\phi (y) \equiv H\left (\frac {1}{4}-y^2\right )$, except that now we modify this to an associated initial-boundary value problem on the finite spatial interval $[0,a]$ rather than the whole real line. Boundary conditions are required at the end points of the interval, and we address the situations when these are of either Dirichlet or Neumann type. This model is a natural extension of the classical Fisher-KPP model, with the introduction of the simplest possible nonlocal effect into the saturation term. Nonlocal reaction-diffusion models arise naturally in a variety of (frequently biological or ecological) contexts, and as such it is of fundamental interest to examine their properties in detail, and to compare and contrast these with the well known properties of the classical Fisher-KPP model.
A tame dynamical system can be characterized by the cardinality of its enveloping (or Ellis) semigroup. Indeed, this cardinality is that of the power set of the continuum $2^{\mathfrak c}$ if the system is non-tame. The semigroup admits a minimal bilateral ideal and this ideal is a union of isomorphic copies of a group $\mathcal H$, called the structure group. For almost automorphic systems, the cardinality of $\mathcal H$ is at most ${\mathfrak c}$ that of the continuum. We show a partial converse of this which holds for minimal systems for which the Ellis semigroup of their maximal equicontinuous factor acts freely, namely that the cardinality of $\mathcal H$ is $2^{{\mathfrak c}}$ if the proximal relation is not transitive and the subgroup generated by products $\xi \zeta ^{-1}$ of singular points $\xi ,\zeta $ in the maximal equicontinuous factor is not open. This refines the above statement about non-tame Ellis semigroups, as it locates a particular algebraic component of the latter which has such a large cardinality.
The three main themes of this book, probability theory, differential geometry, and the theory of integrable systems, reflect the broad range of mathematical interests of Henry McKean, to whom it is dedicated. Written by experts in probability, geometry, integrable systems, turbulence, and percolation, the seventeen papers included here demonstrate a wide variety of techniques that have been developed to solve various mathematical problems in these areas. The topics are often combined in an unusual and interesting fashion to give solutions outside of the standard methods. The papers contain some exciting results and offer a guide to the contemporary literature on these subjects.
Inverse problems arise in practical situations such as medical imaging, geophysical exploration, and non-destructive evaluation where measurements made on the exterior of a body are used to determine properties of the inaccessible interior. There have been substantial developments in the mathematical theory of inverse problems, and applications have expanded greatly. In this volume, leading experts in the theoretical and applied aspects of inverse problems offer extended surveys on several important topics in modern inverse problems, such as microlocal analysis, reflection seismology, tomography, inverse scattering, and X-ray transforms. Each article covers a particular topic or topics with an emphasis on accessibility and integration with the whole volume. Thus the collection can be at the same time stimulating to researchers and accessible to graduate students.
We consider families of special cycles, as introduced by Kudla, on Shimura varieties attached to anisotropic quadratic spaces over totally real fields. By augmenting these cycles with Green currents, we obtain classes in the arithmetic Chow groups of the canonical models of these Shimura varieties (viewed as arithmetic varieties over their reflex fields). The main result of this paper asserts that generating series built from these cycles can be identified with the Fourier expansions of non-holomorphic Hilbert-Jacobi modular forms. This result provides evidence for an arithmetic analogue of Kudla’s conjecture relating these cycles to Siegel modular forms.
By methods of harmonic analysis, we identify large classes of Banach spaces invariant of periodic Fourier multipliers with symbols satisfying the classical Marcinkiewicz type conditions. Such classes include general (vector-valued) Banach function spaces Φ and/or the scales of Besov and Triebel–Lizorkin spaces defined on the basis of Φ.
We apply these results to the study of the well-posedness and maximal regularity property of an abstract second-order integro-differential equation, which models various types of elliptic and parabolic problems arising in different areas of applied mathematics. In particular, under suitable conditions imposed on a convolutor c and the geometry of an underlying Banach space X, we characterize the conditions on the operators A, B, and P on X such that the following periodic problem
\begin{equation*}\partial P \partial u + B \partial u + {A} u + c \ast u = f \qquad \textrm{in } {\mathcal D}'({\mathbb{T}}; X)\end{equation*}
is well-posed with respect to large classes of function spaces. The obtained results extend the known theory on the maximal regularity of such problem.
In this article, we revisit the notion of some hyperbolicity introduced by Pujals and Sambarino [A sufficient condition for robustly minimal foliations. Ergod. Th. & Dynam. Sys.26(1) (2006), 281–289]. We present a more general definition that, in particular, can be applied to the symplectic context (something that was not possible for the previous one). As an application, we construct $C^1$ robustly transitive derived from Anosov diffeomorphisms with mixed behaviour on centre leaves.
The investigation of truncated theta series was popularized by Andrews and Merca. In this article, we establish an explicit expression with nonnegative coefficients for the bivariate truncated Jacobi triple product series:
which can be regarded as a companion to Wang and Yee’s truncation of the triple product identity. As applications, our result confirms a conjecture of Li, Lin, and Wang and implies a family of linear inequalities for a bi-parametric partition function. We also work on another truncated triple product series arising from the work of Xia, Yee, and Zhao and derive similar nonnegativity results and linear inequalities.
We study weighted Sobolev inequalities on open convex cones endowed with α-homogeneous weights satisfying a certain concavity condition. We establish a so-called reduction principle for these inequalities and characterize optimal rearrangement-invariant function spaces for these weighted Sobolev inequalities. Both optimal target and optimal domain spaces are characterized. Abstract results are accompanied by general yet concrete examples of optimal function spaces. For these examples, the class of so-called Lorentz–Karamata spaces, which contains in particular Lebesgue spaces, Lorentz spaces, and some Orlicz spaces, is used.
R. Pavlov and S. Schmieding [On the structure of generic subshifts. Nonlinearity36 (2023), 4904–4953] recently provided some results about generic $\mathbb {Z}$-shifts, which rely mainly on an original theorem stating that isolated points form a residual set in the space of $\mathbb {Z}$-shifts such that all other residual sets must contain it. As a direction for further research, they pointed towards genericity in the space of $\mathbb {G}$-shifts, where $\mathbb {G}$ is a finitely generated group. In the present text, we approach this for the case of $\mathbb {Z}^d$-shifts, where $d \ge 2$. As it is usual, multidimensional dynamical systems are much more difficult to understand. In light of the result of R. Pavlov and S. Schmieding, it is natural to begin with a better understanding of isolated points. We prove here a characterization of such points in the space of $\mathbb {Z}^d$-shifts, in terms of the natural notion of maximal subsystems that we also introduce in this article. From this characterization, we recover the result of R. Pavlov and S. Schmieding for $\mathbb {Z}^1$-shifts. We also prove a series of results that exploit this notion. In particular, some transitivity-like properties can be related to the number of maximal subsystems. Furthermore, we show that the Cantor–Bendixon rank of the space of $\mathbb {Z}^d$-shifts is infinite for $d>1$, while for $d=1$, it is known to be equal to one.
that hold for all subsets A of the same discrete cubes. A general theory, analogous to the work of de Dios Pont, Greenfeld, Ivanisvili, and Madrid, is developed to show that the critical exponents are related by $p_{k,n} t_{k,n} = 2^k$. This is used to prove the three main results of the article:
• an explicit formula for $t_{k,2}$, which generalizes a theorem by Kane and Tao,
• two-sided asymptotic estimates for $t_{k,n}$ as $n\to\infty$ for a fixed $k\geqslant2$, which generalize a theorem by Shao, and
• a precise asymptotic formula for $t_{k,n}$ as $k\to\infty$ for a fixed $n\geqslant2$.
In the first part of the paper, we prove a mirror symmetry isomorphism between integral tropical homology groups of a pair of mirror tropical Calabi-Yau hypersurfaces. We then apply this isomorphism to prove that a primitive patchworking of a central triangulation of a reflexive polytope gives a connected real Calabi-Yau hypersurface if and only if the corresponding divisor class on the mirror is not zero.
In one-dimensional Diophantine approximation, the Diophantine properties of a real number are characterized by its partial quotients, especially the growth of its large partial quotients. Notably, Kleinbock and Wadleigh [Proc. Amer. Math. Soc.146(5) (2018), 1833–1844] made a seminal contribution by linking the improvability of Dirichlet’s theorem to the growth of the product of consecutive partial quotients. In this paper, we extend the concept of Dirichlet non-improvable sets within the framework of shrinking target problems. Specifically, consider the dynamical system $([0,1), T)$ of continued fractions. Let $\{z_n\}_{n \ge 1}$ be a sequence of real numbers in $[0,1]$ and let $B> 1$. We determine the Hausdorff dimension of the following set: $ \{x\in [0,1):|T^nx-z_n||T^{n+1}x-Tz_n|<B^{-n}\text { infinitely often}\}. $