To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The Jansen–Rit model of a cortical column in the cerebral cortex is widely used to simulate spontaneous brain activity (electroencephalogram, EEG) and event-related potentials. It couples a pyramidal cell population with two interneuron populations, of which one is fast and excitatory, and the other slow and inhibitory.
Our paper studies the transition between alpha and delta oscillations produced by the model. Delta oscillations are slower than alpha oscillations and have a more complex relaxation-type time profile. In the context of neuronal population activation dynamics, a small threshold means that neurons begin to activate with small input or stimulus, indicating high sensitivity to incoming signals. A steep slope signifies that activation increases sharply as input crosses the threshold. Accordingly, in the model, the excitatory activation thresholds are small and the slopes are steep. Hence, we replace the excitatory activation function with its singular limit, which is an all-or-nothing switch (a Heaviside function). In this limit, we identify the transition between alpha and delta oscillations as a discontinuity-induced grazing bifurcation. At the grazing, the minimum of the pyramidal-cell output equals the threshold for switching off the excitatory interneuron population, leading to a collapse in excitatory feedback.
In this paper, we show that the diffraction of the primes is absolutely continuous, showing no bright spots (Bragg peaks). We introduce the notion of counting diffraction, extending the classical notion of (density) diffraction to sets of density zero. We develop the counting diffraction theory and give many examples of sets of zero density of all possible spectral types.
In this paper, we consider a conilpotent coalgebra $C$ over a field $k$. Let $\Upsilon :\ C{{-\mathsf{Comod}}}\longrightarrow C^*{{-\mathsf{Mod}}}$ be the natural functor of inclusion of the category of $C$-comodules into the category of $C^*$-modules, and let $\Theta :\ C{{-\mathsf{Contra}}}\longrightarrow C^*{{-\mathsf{Mod}}}$ be the natural forgetful functor. We prove that the functor $\Upsilon$ induces a fully faithful triangulated functor on bounded (below) derived categories if and only if the functor $\Theta$ induces a fully faithful triangulated functor on bounded (above) derived categories, and if and only if the $k$-vector space $\textrm {Ext}_C^n(k,k)$ is finite-dimensional for all $n\ge 0$. We call such coalgebras “weakly finitely Koszul”.
We study the distribution of consecutive sums of two squares in arithmetic progressions. We show that for any odd squarefree modulus q, any two reduced congruence classes $a_1$ and $a_2$ mod q, and any $r_1,r_2 \ge 1$, a positive density of sums of two squares begin a chain of $r_1$ consecutive sums of two squares, all of which are $a_1$ mod q, followed immediately by a chain of $r_2$ consecutive sums of two squares, all of which are $a_2$ mod q. This is an analog of the result of Maynard for the sequence of primes, showing that for any reduced congruence class a mod q and for any $r \ge 1$, a positive density of primes begin a sequence of r consecutive primes, all of which are a mod q.
The shimmy oscillations of a truck’s front wheels with dependent suspension are studied to investigate how shimmy depends on changes in inflation pressure, with emphasis on the inclusion of four nonlinear tyre characteristics to improve the accuracy of the results. To this end, a three degree-of-freedom shimmy model is created which reflects pressure dependency initially only through tyre lateral force. Bifurcation analysis of the model reveals that four Hopf bifurcations are found with decreased pressures, corresponding to two shimmy modes: the yaw and the tramp modes, and there is no intersection between them. Hopf bifurcations disappear at pressures slightly above nominal value, resulting in a system free of shimmy. Further, two-parameter continuations illustrate that there are two competitive mechanisms between the four pressure-dependent tyre properties, suggesting that the shimmy model should balance these competing factors to accurately capture the effects of pressure. Therefore, the mathematical relations between these properties and inflation pressure are introduced to extend the initial model. Bifurcation diagrams computed on the initial and extended models are compared, showing that for pressures below nominal value, shimmy is aggravated as the two modes merge and the shimmy region expands, but for higher pressures, shimmy is mitigated and disappears early.
This article is the second in a series investigating cartesian closed varieties. In first of these, we showed that every non-degenerate finitary cartesian variety is a variety of sets equipped with an action by a Boolean algebra B and a monoid M which interact to form what we call a matched pair ${\left[\smash{{B} \mathbin{\mid}{M} }\right]}$. In this article, we show that such pairs ${\left[\smash{{B} \mathbin{\mid}{M} }\right]}$ are equivalent to Boolean restriction monoids and also to ample source-étale topological categories; these are generalizations of the Boolean inverse monoids and ample étale topological groupoids used to encode self-similar structures such as Cuntz and Cuntz–Krieger $C^\ast$-algebras, Leavitt path algebras, and the $C^\ast$-algebras associated with self-similar group actions. We explain and illustrate these links and begin the programme of understanding how topological and algebraic properties of such groupoids can be understood from the logical perspective of the associated varieties.
For multi-scale differential equations (or fast–slow equations), one often encounters problems in which a key system parameter slowly passes through a bifurcation. In this article, we show that a pair of prototypical reaction–diffusion equations in two space dimensions can exhibit delayed Hopf bifurcations. Solutions that approach attracting/stable states before the instantaneous Hopf point stay near these states for long, spatially dependent times after these states have become repelling/unstable. We use the complex Ginzburg–Landau equation and the Brusselator models as prototypes. We show that there exist two-dimensional spatio-temporal buffer surfaces and memory surfaces in the three-dimensional space-time. We derive asymptotic formulas for them for the complex Ginzburg–Landau equation and show numerically that they exist also for the Brusselator model. At each point in the domain, these surfaces determine how long the delay in the loss of stability lasts, that is, to leading order when the spatially dependent onset of the post-Hopf oscillations occurs. Also, the onset of the oscillations in these partial differential equations is a hard onset.
We determine the list of automorphism groups for smooth plane septic curves over an algebraically closed field $K$ of characteristic $0$, as well as their signatures. For each group, we also provide a geometrically complete family over$K$, which consists of a generic defining polynomial equation describing each locus up to $K$-projective equivalence. Notably, we present two distinct examples of what we refer to as final strata of smooth plane curves.
In the present work, we investigate the Lie algebra of the Formanek-Procesi group $\textrm {FP}(A_{\Gamma })$ with base group $A_{\Gamma }$ a right-angled Artin group. We show that the Lie algebra $\textrm {gr}(\textrm {FP}(A_{\Gamma }))$ has a presentation that is dictated by the group presentation. Moreover, we show that if the base group $G$ is a finitely generated residually finite $p$-group, then $\textrm { FP}(G)$ is residually nilpotent. We also show that $\textrm {FP}(A_{\Gamma })$ is a residually torsion-free nilpotent group.
Orbit separation dimension ($\mathrm {OSD}$), previously introduced as amorphic complexity, is a powerful complexity measure for topological dynamical systems with pure-point spectrum. Here, we develop methods and tools for it that allow a systematic application to translation dynamical systems of tiling spaces that are generated by primitive inflation rules. These systems share many nice properties that permit the explicit computation of the $\mathrm {OSD}$, thus providing a rich class of examples with non-trivial $\mathrm {OSD}$.
We prove that the class of separably algebraically closed valued fields equipped with a distinguished Frobenius endomorphism $x \mapsto x^q$ is decidable, uniformly in q. The result is a simultaneous generalization of the work of Chatzidakis and Hrushovski (in the case of the trivial valuation) and the work of the first author and Hrushovski (in the case where the fields are algebraically closed).
The logical setting for the proof is a model completeness result for valued fields equipped with an endomorphism $\sigma $ which is locally infinitely contracting and fails to be onto. Namely, we prove the existence of a model complete theory $\widetilde {\mathrm {VFE}}$ amalgamating the theories $\mathrm {SCFE}$ and $\widetilde {\mathrm {VFA}}$ introduced in [5] and [11], respectively. In characteristic zero, we also prove that $\widetilde {\mathrm {VFE}}$ is NTP$_2$ and classify the stationary types: they are precisely those orthogonal to the fixed field and the value group.
Étant donnée une suite $A = (a_n)_{n\geqslant 0}$ d’entiers naturels tous au moins égaux à 2, on pose $q_0 = 1$ et, pour tout entier naturel n, $q_{n+1} = a_n q_n$. Tout nombre entier naturel $n\geqslant 1$ admet une unique représentation dans la base A, dite de Cantor, de la forme
$$ \begin{align*} S = \sum_{n \leqslant x}\Lambda(n) f(n) \end{align*} $$
où $\Lambda $ est la fonction de von Mangoldt et f une fonction fortement multiplicative en base A. L’estimation des sommes de type I et II associées repose sur le bon contrôle de transformées de Fourier discrètes de fonctions construites à partir de f par décalage dans la numération en base A. Cette approche pouvant échouer si la suite $(a_n)_{n\geqslant 0}$ est trop irrégulière, nous introduisons la notion de base de Cantor tempérée et obtenons dans ce cadre une majoration générale de la somme S.
Nous étudions plusieurs exemples dans la base $A = (j+2)_{j\geqslant 0}$, dite factorielle. En particulier, si $s_A$ désigne la fonction somme de chiffres dans cette base et p parcourt la suite des nombres premiers, nous montrons que la suite $(s_A(p))_{p\in \mathcal {P}}$ est bien répartie dans les progressions arithmétiques, et que la suite $(\alpha s_A(p))_{p\in \mathcal {P}}$ est équirépartie modulo $1$ pour tout nombre irrationnel $\alpha $.
In this paper, we investigate hypersurfaces of $\mathbb{S}^2\times \mathbb{S}^2$ and $\mathbb{H}^2\times \mathbb{H}^2$ with recurrent Ricci tensor. As the main result, we prove that a hypersurface in $\mathbb{S}^2\times \mathbb{S}^2$ (resp. $\mathbb{H}^2\times \mathbb{H}^2$) with recurrent Ricci tensor is either an open part of $\Gamma \times \mathbb{S}^2$ (resp. $\Gamma \times \mathbb{H}^2$) for a curve $\Gamma$ in $\mathbb{S}^2$ (resp. $\mathbb{H}^2$), or a hypersurface with constant sectional curvature. The latter has been classified by H. Li, L. Vrancken, X. Wang, and Z. Yao very recently.
Given a countable group G and two subshifts X and Y over G, a continuous, shift-commuting map $\phi : X \to Y$ is called a homomorphism. Our main result states that if G is locally virtually nilpotent, X is aperiodic, and Y has the finite extension property, then there exists a homomorphism $\phi : X \to Y$. By combining this theorem with the main result of [1], we obtain that if the same conditions hold, and if additionally the topological entropy of X is less than the topological entropy of Y and Y has no global period, then X embeds into Y.