To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The existence of global solutions to the discrete coagulation equations is investigated for a class of coagulation rates of the form ai, j = rirj + αi, j with αi, j≤Krirj. In particular, global solutions are shown to exist when the sequence (ri) increases linearly or superlinearly with respect to i. In this case also, the failure of density conservation (indicating the occurrence of the gelation phenomenon) is studied.
It is shown that an integral domain R has the property that every pure submodule of a finite direct sum of ideals of R is a summand if and only if R is an h-local Prüfer domain; equivalently, (J + K:I) = (J:I) + (K:I) for all ideals I, J and K of R. These results are extended to submodules of the quotient field of an integral domain.
In this paper, it is proved that, for any m unit vectors. x1…, xm in any n-dimensional real Hilbert space, there exists a unit vector x0 such that
for any y∈Sn−1. The exact value of the above integral is calculated, and these results used to improve some lower bounds for multilinear forms on real Hilbert spaces. An integral expression is also given for the complex case.
where , . The inversion problem for (1) is called regular in Lp if, uniformly in p∈[1, ∞] for any f(x)∈ Lp(R), equation (1) has a unique solution y(x)∈ Lp(R) of the form
with . Here G(x, t) is the Green function corresponding to (1) and c is an absolute constant. For a given s∈[l, ∞], necessary and sufficient conditions are obtained for assertions (2) and (3) to hold simultaneously:
(2) the inversion problem for (1) is regular in Lp;
In [4], we investigated the spaces of continuous functions on countable products of compact Hausdorff spaces. Our main object here is to extend the discussion to arbitrary products of compact Hausdorff spaces. We prove the following theorems in Section 3.
We are interested in the distribution of those zeros of the Riemann zeta-function which lie on the critical line ℜs = ½, and the maxima of the function between successive zeros. Our results are to be independent of any unproved hypothesis. Put
This paper treats the reducibility of the quasiperiodic linear differential equations
where A is a constant matrix with multiple eigenvalues, Q(t) is a quasiperiodic matrix with respect to time t, and ε is a small perturbation parameter. Under some non-resonant conditions, rapidly convergent methods prove that, for most sufficiently small ε, the differential equations are reducible to a constant coefficient differential equation by means of a quasiperiodic change of variables with the same frequencies as Q(t).
Given a Banach space X and a norming subspace Z⊂X*, a geometrical method is introduced to characterize the existence of an equivalent σ(X, Z)-lsc LUR norm on X. A new simple proof of the Theorem of Troyanski: every rotund space with a Kadec norm is LUR renormable, and a generalization of the Moltó, Orihuela and Troyanski characterization of the LUR renormability, are provided without probability arguments. Among other applications, it is shown that a dual Banach space with a w*-Kadec norm admits a dual LUR norm.
In what follows we give a collection of tables of designs which may be used as a quick reference to the state of knowledge on certain parameter sets within a feasible range. In our experience such listings have proved helpful for both theoretical and practical purposes (e.g. in statistics). Naturally such a rather small collection always implies a selection; we think we have made a useful choice, and we hope that the reader will have access to the quoted main sources. In particular, a vast collection of tables is given in the recent CRC handbook of combinatorial designs edited by Colbourn and Dinitz (1996a). We urge the reader to consult this handbook and its electronic update Colbourn and Dinitz (1998) whenever he or she cannot find the desired information in the small set of tables presented here. No serious design theorist should be without this collection.
The compilation we present would not have been possible without the support of several friends and colleagues, among whom we are indebted mainly to Andries Brouwer, Charles Colbourn and Alexander Rosa as well as the late Haim Hanani.
Block Designs
We here present a table of block designs Sλ (2, k; ν) with k ≤ ν/2 and replication number r in the range from 3 to 17.