To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The linear governing equations of a micropolar thermoelastic medium without energy dissipation are solved to show the existence of four plane waves in a two-dimensional model. The expressions for velocities of these plane waves are obtained. The boundary conditions at the free surface are used to obtain a system of four nonhomogeneous equations. These equations are solved numerically for a particular model to obtain reflection coefficients for the incidence of coupled longitudinal displacement and coupled transverse microrotational waves. These reflection coefficients as well as the energy ratios are computed and are shown graphically with the angle of incidence in the presence and absence of thermal effects.
In this paper we consider the MAP/G/1 queueing system with infinite capacity. In analysis, we use the supplementary variable method to derive the double transform of the queue length and the remaining service time of the customer in service (if any) in the steady state. As will be shown in this paper, our method is very simple and elegant. As a one-dimensional marginal transform of the double transform, we obtain the generating function of the queue length in the system for the MAP/G/1 queue, which is consistent with the known result.
In management science and system engineering, problems with two incommensurate objectives are often detected. Bicriterion optimization finds an optimal solution for the problems. In this paper it is shown that bicriterion discrete optimal control problems can be solved by using a parametric optimization technique with relaxed convexity assumptions. Some necessary optimality conditions for discrete optimal control problems subject to a linear state difference equation are derived. It is shown that in this case no adjoint equation is required.
A functional differential equation for the steady size distribution of a population is derived from the usual partial differential equation governing the size distribution, in the particular case where birth occurs by one individual of size x dividing into α new individuals of size x/α. This leads, in the case of constant growth and birth rate functions, to the functional differential equation y′(x) = −ay(x) + aαy(αx) together with the integral condition We first look at a number of properties that any solution of this equation and boundary condition must have, and then proceed to find the unique solution by the method of Laplace transforms. Results from number theory on the infinite product found in the solution are presented, and it is shown that y(x) tends to a normal distribution as α → 1+.
where e is a small positive parameter, a method is given for the construction of a basis for the solution space.
If A has n linearly independent eigenvector functions, then there exists a choice of these, {si}, with corresponding eigenvalue functions {λi}, such that there is a local basis for solution, that takes the form
where vi is a vector that tends to zero with e. In general, a basis of this form exists only on an interval in which the distinct eigenvalues have their real parts ordered. A construction is provided for continuing any solution across the boundaries of any such interval. These results are proved for a finite or infinite interval for which there are only a finite number of points at which the ordering of the real parts of eigenvalues changes.
We obtain a generalized discrete Hilbert and Hardy-Hilbert inequality with non-conjugate parameters by means of an Euler-Maclaurin summation formula. We derive some general results for homogeneous functions and compare our findings with existing results. We improve some earlier results and apply the results to some special homogeneous functions.
The dual integral equations describing heat flow about a circular Heat Flux Sensor on the surface of a layered medium are derived and discussed, together with the extent to which the Heat Flux Sensor measures the heat flow which would occur in the absence of a Heat Flux Sensor. An asymptotic analysis provides new analytical results supporting those derived previously by numerical methods.
It is suggested that some properties of the general problem of a Heat Flux Sensor on the surface of a multiply-layered medium can be approximated by a lumped-parameter model depending on only four non-dimensional numbers: namely, two non-dimensional linear heat transfer coefficients, and essentially two non-dimensional thermal resistances. Some support for the lumped parameter model is provided.
Optimal control problems governed by semilinear elliptic partial differential equations are considered. No Cesari-type conditions are assumed. By proving an existence theorem and the Pontryagin maximum principle of optimal “state-control” pairs for the corresponding relaxed problems, we establish an existence theorem of optimal pairs for the original problem.
Coupled nonlinear partial differential equations, which describe a nonlinear resonant interaction between the fundamental and its first harmonic on a magnetohydro-dynamic jet, are derived by the derivative expansion method. We investigate the spatial behaviour of the amplitude and phases. It is shown that the fluid surface is unstable in the neighbourhood of the first resonant wavenumber. In the steady state, it is observed that the general motion consists of both amplitude and phase modulated waves.
Computation of eigenvalues of regular Sturm-Liouville problems with periodic or semiperiodic boundary conditions is considered. A simple asymptotic correction technique of Paine, de Hoog and Anderssen is shown to reduce the error in the centred finite difference estimate of the kth eigenvalue obtained with uniform step length h from O(k4h2) to O(kh2). Possible extensions of the results are suggested and the relative advantages of the method are discussed.
Complementary variational principles are presented for a class of nonlinear boundary value problems S* Sφ = g(φ) in which g is not necessarily monotone. The results are illustrated by two examples, accurate variational solutions being obtained in both cases.
Consider the forced differential equation with variable delay
where
We establish a sufficient condition for every solution to tend to zero. We also obtain a sharper condition for every solution to tend to zero when is asymptotically constant.
A condition guranteeing the stability of linear systems with time delays in the interactions among elements is generalized to cover non-linear systems and discontinuous, unbounded delays.
This note is concerned with the derivation of velocity potentials describing the generation of infinitesimal gravity waves in a motionless liquid with an inertial surface composed of uniformly distributed floating particles, due to fundamental line and point sources with time-dependent strengths submerged in a liquid of finite constant depth.
Ordinary difference equations (OΔE's), mostly of order two and three, are derived for the trigonometric, Jacobian elliptic, and hyperbolic functions. The results are used to derive partial difference equations (PΔE's) for simple solutions of the wave equation and three nonlinear evolutionary partial differential equations.