To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The framework for accelerated spectral refinement for a simple eigenvalue developed in Part I of this paper is employed to treat the general case of a cluster of eigenvalues whose total algebraic multiplicity is finite. Numerical examples concerning the largest and the second largest multiple eigenvalues of an integral operator are given.
A simple model for the propagation of a combustion wave is proposed and the speed of propagation is predicted. It is assumed that the reactant ignites at a specified temperature and then burns until depleted with reaction rate dependent on temperature and reactant concentration. The exact solution and linear stability are determined in the case of constant heat generation and a numerical scheme is developed to generate traveling wave solutions in the more general case. This numerical method is applied to the case where the temperature dependence of the reaction rate is modeled by the Arrhenius function.
Lotka-Volterra systems have been used extensively in modelling population dynamics. In this paper, it is shown that chaotic behaviour in the sense of Smale can exist in timeperiodically perturbed systems of Lotka-Volterra equations. First, a slowly varying threedimensional perturbed Lotka-Volterra system is considered and the corresponding unperturbed system is shown to possess a heteroclinic cycle. By using Melnikov's method, sufficient conditions are obtained for the perturbed system to have a transverse heteroclinic cycle and hence to possess chaotic behaviour in the sense of Smale. Then a special case involving a reduction to a two-dimensional Lotka-Volterra system is examined, leading finally to an application with a model for the self-organisation of macromolecules.
An approximate analysis, based on the standard perturbation technique, is described in this paper to find the corrections, up to first order to the reflection and transmission coefficients for the scattering of water waves by a submerged slender barrier, of finite length, in deep water. Analytical expressions for these corrections for a submerged nearly vertical plate as well as for a submerged vertically symmetric slender barrier of finite length are also deduced, as special cases, and identified with the known results. It is verified, analytically, that there is no first order correction to the transmitted wave at any frequency for a submerged nearly vertical plate. Computations for the reflection and transmission coefficients up to O(ε), where ε is a small dimensionless quantity, are also performed and presented in the form of both graphs and tables.
In this paper we will study a feature of a localised topographic flow. We will prove existence of an ideal fluid containing a bounded vortex, approaching a uniform flow at infinity and passing over a localised seamount. The domain of the fluid is the upper half-plane and the data prescribed is the rearrangement class of the vorticity field.
The steady state bifurcations near a double zero eigenvalue of the reaction diffusion equation associated with a tri-molecular chemical reaction (the Brusselator) are analysed. Special emphasis is put on three degeneracies where previous results of Schaeffer and Golubitsky do not apply. For these degeneracies it is shown by means of a LiapunovSchmidt reduction that the steady state bifurcations are determined by codimension-three normal forms. They are of types (9)31, (8)221 and (6a)ρ,κ in a recent classification of Z(2)-equivariant imperfect bifurcations with corank two. Each normal form couples an ordinary corank-1 bifurcation in the sense of Golubitsky and Schaeffer to a degenerate Z(2)-equivariant corank-1 bifurcation of Golubitsky and Langford in a specific way.
An iteration scheme previously obtained by the author is used to study the dependence of criticality on initial data and the parameters in a combustion problem. Numerical results are presented for a slab, a cylinder and a sphere. These are compared with the results of previous workers.
We present a geometrical method for the solution of a certain class of non-linear boundary value problems. The results generalize those of the standard hypercircle method for linear problems. Two illustrative examples are described.
The bow flow generated by a wide flat-bottomed ship moving in water of finite depth is examined. Solutions obtained using an integral equation technique are presented for a range of different depths and for a range of angles of the front of the bow. The solution for the limiting case of infinite Froude number is obtained as an integral, and numerical solutions are found for the nonlinear problem in which the Froude number is finite. Solutions with smooth separation are shown to exist for all values of Froude number greater than unity, for any bow slope.
The method of asymptotic matching introduced by Buchwald [I] is adapted to the case of the diffraction of plane longitudinal and shear waves by cylindrical cavities with elliptic cross-sections. It is assumed that the dimensions of the cross section are small compared with the wavelength of the incident waves. Asymptotic formulae for the scattered wave potentials are obtained.
The method is valid when the cavity reduces to a two-dimensional stress free crack whose length is small compared with the wavelength. Formulae for the scattered waves, and for the stress-concentrations at the crack tips are obtained.
The known linear model reference adaptive control (MRAC) technique is extended to cover nonlinear and nonlinearizable systems (several equilibria, etc) and used to stabilize the system about a model. The method proposed applies the same Liapunov Design Technique but avoids the classical error equation. Instead it operates in the product of the state spaces of plant and model, aiming at convergence to a diagonal set. Control program, Liapunov functions and adaptive law are specified. The case is illustrated on a two-degrees of freedom robotic manipulator.
A disease transmission model of SEIR type with exponential demographic structure is formulated, with a natural death rate constant and an excess death rate constant for infective individuals. The latent period is assumed to be constant, and the force of the infection is assumed to be of the standard form, namely, proportional to I(t)/N(t) where N(t) is the total (variable) population size and I(t) is the size of the infective population. The infected individuals are assumed not to be able to give birth and when an individual is removed fromthe I-class, it recovers, acquiring permanent immunity with probability f (0 ≤ f ≤ 1) and dies from the disease with probability 1 − f. The global attractiveness of the disease-free equilibrium, existence of the endemic equilibrium as well as the permanence criteria are investigated. Further, it is shown that for the special case of the model with zero latent period, R0 > 1 leads to the global stability of the endemic equilibrium, which completely answers the conjecture proposed by Diekmann and Heesterbeek.
Consider a density-dependent birth-death process XN on a finite state space of size N. Let PN be the law (on D([0, T]) where T > 0 is arbitrary) of the density process XN/N and let πN be the unique stationary distribution (on[0,1]) of XN/N, if it exists. Typically, these distributions converge weakly to a degenerate distribution as N → ∞ so the probability of sets not containing the degenerate point will tend to 0; large deviations is concerned with obtaining the exponential decay rate of these probabilities. Friedlin-Wentzel theory is used to establish the large deviations behaviour (as N → ∞) of PN. In the one-dimensional case, a large deviations principle for the stationary distribution πN is obtained by elementary explicit computations. However, when the birth-death process has an absorbing state at 0 (so πN no longer exists), the same elementary computations are still applicable to the quasi-stationary distribution, and we show that the quasi-stationary distributions obey the same large deviations principle as in the recurrent case. In addition, we address some questions related to the estimated time to absorption and obtain a large deviations principle for the invariant distribution in higher dimensions by studying a quasi-potential.
The problem of reflection of water waves by a nearly vertical porous wall has been investigated. A perturbational analysis has been applied for the first order correction to be employed to the corresponding vertical wall problem. The Green's function technique has been used to obtain the solution of the boundary value problem at hand, after utilising a mixed Fourier transform together with an idea involving the regularity of the transformed function along the real axis. The cases of fluid of finite as well as infinite depth have been taken into consideration. Particular shapes of the wall have been considered and numerical results are also discussed.
The main result of this paper is that the oscillation and nonoscillation properties of a nonlinear impulsive delay differential equation are equivalent respectively to the oscillation and nonoscillation of a corresponding nonlinear delay differential equation without impulse effects. An explicit necessary and sufficient condition for the oscillation of a nonlinear impulsive delay differential equation is obtained.
This paper contains a detailed formulation of advanced tumor therapy with neutron beams as a mixed boundary initial value problem for multigroup neutron diffusion in a composite 3D multiregional system. By applying a vector-matrix composite region finite-integral transformation we derive the principal operational solution to this problem as the group-regional neutron flux distribution inside the tumor 3D subregions. The principal solution is then converted into expressions of various order approximation, which may be directly programmed on a computer.
Fisher's equation, which describes a balance between linear diffusion and nonlinear reaction or multiplication, is studied numerically by a Petrov-Galerkin finite element method. The results show that any local initial disturbance can propagate with a constant limiting speed when time becomes sufficiently large. Both the limiting wave fronts and the limiting speed are determined by the system itself and are independent of the initial values. Comparing with other studies, the numerical scheme used in this paper is satisfactory with regard to its accuracy and stability. It has the advantage of being much more concise.
We obtain representations for the Mellin transform of the product of generalized hypergeometric functions0F1[−a2x2]1F2[−b2x2]fora, b > 0. The later transform is a generalization of the discontinuous integral of Weber and Schafheitlin; in addition to reducing to other known integrals (for example, integrals involving products of powers, Bessel and Lommel functions), it contains numerous integrals of interest that are not readily available in the mathematical literature. As a by-product of the present investigation, we deduce the second fundamental relation for3F2[1]. Furthermore, we give the sine and cosine transforms of1F2[−b2x2].