To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Singular perturbation methods are applied to an analysis of the operation of an isothermal gas step slider bearing of narrow geometry and operating at moderate bearing numbers. Approximate expressions are obtained for the pressure field in the lubricating gap, as well as the load-carrying capacity of the bearing; and the influence of the nature of the bearing step on those quantities is investigated. Comparisons are made with results obtained using a standard numerical package.
A calculation of the electromagnetic response of a thin conductor in the presence of an exciting primary magnetic field has been attempted by various authors. Analytic solutions are obtainable when either the conductor is of infinite extent or when the problem possesses some symmetry. The loss of symmetry makes the problem difficult to solve except for the simplest shape – that of a circular conductor. A numerical method has been used for the rectangular conductor by other authors. In this paper we consider the response due to a thin plane conductor of arbitrary shape. The method involves the numerical generation of a set of body-fitted orthogonal curvilinear coordinates which maps the conductor onto a unit square. Good orthogonal grids can be generated for shapes that do not deviate too far from the rectangular. In terms of these curvilinear coordinates the vector potential for the area current density satisfies an integro-differential equation which is solved numerically.
We investigate the reflection and transmission of SH-waves at a corrugated interface between two different anisotropic, heterogeneous elastic solid half-spaces. Both the media are assumed to be transversely isotropic and vertically heterogeneous. Rayleigh's method is followed and expressions for the reflection and transmission coefficients are obtained in closed form for the first-order approximation of the corrugation. It is found that these coefficients depend on corrugation and are affected by the anisotropy and heterogeneity of the media. Numerical computations for a particular model have been performed.
It is known that many optimization problems can be reformulated as composite optimization problems. In this paper error analyses are provided for two kinds of smoothing approximation methods of a unconstrained composite nondifferentiable optimization problem. Computational results are presented for nondifferentiable optimization problems by using these smoothing approximation methods. Comparisons are made among these methods.
This paper examines the control of an interface between a suspension of sedimenting particles in liquid and a bed of dense-packed particles at the bottom of the suspension. The problem arises in the operation of continuous thickeners (e.g. in mineral processing) and is here mathematically described by a first order inhomogeneous partial differential equation for the concentration C(x, t) of particles. The controlled variable is the height H* of the bed, and the control variables are the volume fluxes injected at the feed level and removed at the bed. A strategy to control the interface is devised, and control is confirmed and demonstrated by a series of numerical experiments.
Connections between a linear partial difference equation with constant coefficients and a nonlinear partial difference equation are established by means of a comparison theorem and a continuous dependence of parameters theorem. A linearized oscillation theorem is also established as an application.
We wish to correct a minor error in the recent paper [2]. That paper was concerned with an integral equation defined on a closed polygon Γ with r corners at the points x0, x2, …, x2r = x0. We parameterized Γ using a mapping γ:[−π,π] → Γ defined as follows. For each l, introduce the mid-point x2l−1 of the side joining x2l—2 to x2l. Then introduce 2r + 1 points in parameter space
with the property that for each j = 1, …, 2r
where mj are integers and . Then γ(s) is defined by
for j = 1, …, 2r. The {Sj} are then the preimages of the {xj} under γ. Moreover, in view of (1), a family of uniform meshes can be constructed on [−π, π] which include {Sj} as the break-points. Then γ maps these to meshes which are uniform on each segment joining xj−1 to xj (which we denote Γj). These meshes are used to discretize the integral equation.
The linear stability properties are examined of long wavelength vortex modes in two time-periodic flows. These flows are the motion which is induced by a torsionally oscillating cylinder within a viscous fluid and, second, the flow which results from the sinusoidal heating of an infinite layer of fluid. Previous studies concerning these particular configurations have shown that they are susceptible to vortex motions and linear neutral curves have been computed for wavenumbers near their critical value. These computations become increasingly difficult for long wavelength motions and here we consider such modes using asymptotic methods. These yield simple results which are formally valid for small wavenumbers and we show that the agreement between these asymptotes and numerical solutions is good for surprisingly large wavenumbers. The two problems studied share a number of common features but also have important differences and, between them, our methods and results provide a basis which can be extended for use with other time-periodic flows.
In this note we present a variable order continuation method for the solution of nonlinear equations when only a poor estimate of a solution is known. The method changes continuously from one which improves the global convergence characteristics to one which attains rapid convergence to a solution and proves to be more efficient than methods previously presented in [2].
The problem of thermal ignition in a reactive slab with unsymmetric temperatures equal to 0 and T is considered. Steady state upper and lower solutions are constructed. It is found that T plays a critical role. Results similar to the case with symmetric boundary temperatures are expected when T is small. When T is sufficiently large, there is only one steady state upper or lower solution. The time dependent problem is then considered. Phenomena suggested by studying the upper and lower steady state solutions are confirmed.
In two-dimensional flow past a body close to a free surface, the upwardly diverted portion may separate to form a splash. We model the nose of such a body by a semi-infinite obstacle of finite draft with a smoothly curved front face. This problem leads to a nonlinear integral equation with a side condition, a separation condition and an integral constraint requiring the far-upstream free surface to be asymptotically plane. The integral equation, called Villat's equation, connects a natural parametrisation of the curved front face with the parametrisation by the velocity potential near the body. The side condition fixes the position of the separation point, whereas the separation condition, known as the Brillouin-Villat condition, imposes a continuity relation to be satisfied at separation. For the described flow we derive the Brillouin-Villat condition in integral form and give a numerical solution to the problem using a polygonal approximation to the front face.
The asymptotic expansion for a spectral function of the Laplacian operator, involving geometrical properties of the domain, is demonstrated by direct calculation for the case of a doubly-connected region in the form of a narrow annular membrane. By utilizing a known formula for the zeros of the eigenvalue equation containing Bessel functions, the area, total perimeter and connectivity are all extracted explicitly.
Entirely elementary methods are employed to determine explicit formulae for the coefficients of commuting ordinary differential operators of orders six and nine which correspond to an elliptic curve. These formulae come from solving the nonlinear ordinary differential equations which are equivalent to the commutativity condition. Most solutions turn out to be rational expressions in one or two arbitrary functions and their derivatives. The corresponding Burchnall-Chaundy curves are computed.
We explore the solvability of a general system of nonlinear relaxed cocoercive variational inequality (SNVI) problems based on a new projection system for the direct product of two nonempty closed and convex subsets of real Hilbert spaces.
We examine the valuation of American options in a discrete time setting where the exercise price is known a priori but varies with time. (This is in contrast with the classical Black-Scholes [2] analysis, which lies in a continuous time framework and with constant exercise price.) In particular we consider a time series of exercise prices which are themselves a realisation of the share price random walk — that of the previous year, say.
This paper investigates the Cauchy problem for two classes of parabolic systems with localised sources. We first give the blowup criterion, and then deal with the possibilities of simultaneous blowup or non-simultaneous blowup under some suitable assumptions. Moreover, when simultaneous blowup occurs, we also establish precise blowup rate estimates. Finally, using similar ideas and methods, we shall consider several nonlocal problems with homogeneous Neumann boundary conditions.