To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We consider the stability of solutions for a family of Dirichlet problems with (p, q)-growth conditions. We apply the results obtained to show continuous dependence on a functional parameter and the existence of an optimal solution in a control problem with state constraints governed by the p(x)-Laplacian equation.
Certain definite integrals involving spherical Bessel functions are treated by relating them to Fourier integrals of the point multipoles of potential theory. The main result (apparently new) concerns
where l1, l2 and N are non-negative integers, and r1 and r2 are real; it is interpreted as a generalized function derived by differential operations from the delta function δ(r1 − r2). An ancillary theorem is presented which expresses the gradient ∇2nYlm(∇) of a spherical harmonic function g(r)YLM(Ω) in a form that separates angular and radial variables. A simple means of translating such a function is also derived.
Two coupled nonlinear evolution equations correct to fourth order in wave steepness are derived for a three-dimensional wave packet in the presence of a thin thermocline. These two coupled equations are reduced to a single equation on the assumption that the space variation of the amplitudes takes place along a line making an arbitrary fixed angle with the direction of propagation of the wave. This single equation is used to study the stability of a uniform wave train. Expressions for maximum growth rate of instability and wave number at marginal stability are obtained. Some of the results are shown graphically. It is found that a thin thermocline has a stabilizing influence and the maximum growth rate of instability decreases with the increase of thermocline depth.
A general framework is developed for constructing higher order spectral refinement schemes for a simple eigenvalue. Well-known techniques for ordinary spectral refinement are carried over to higher order spectral refinement yielding faster rates of convergence. Numerical examples are given by considering an integral operator.
The aggregation-decomposition method is used to derive sufficient conditions for the uniform stability, uniform asymptotic stability and exponential stability of the null solution of large-scale systems described by functional differential equations with lags appearing only in the interconnections. The free subsystems are described by ordinary differential equations for which converse theorems involving Lyapunov functions exist and thus enable the sufficient conditions to be expressed in terms of Lyapunov functions rather than the more complicated Lyapunov functionals.
In this paper, we exploit a new series summation and convergence improvement technique (that is, Drazin and Tourigny [5]), in order to study the steady flow of a viscous incompressible fluid both in a porous pipe with moving walls and an exponentially diverging asymmetrical channel. The solutions are expanded into Taylor series with respect to the corresponding Reynolds number. Using the D-T method, the bifurcation and the internal flow separation studies are performed.
Uncertainty principles like Heisenberg's assert an inequality obeyed by some measure of joint uncertainty associated with a function and its Fourier transform. The more groups under which that measure is invariant, the more that measure represents an intrinsic property of the underlying object represented by the given function. The Fourier transform is imbedded in a continuous group of operators, the fractional Fourier transforms, but the Heisenberg measure of overall spread turns out not to be invariant under that group. A new family is developed of measures that are invariant under the group of fractional Fourier transforms and that obey associated uncertainty principles. The first member corresponds to Heisenberg's measure but is generally smaller than his although equal to it in special cases.
In this paper we investigate the boundedness and asymptotic behaviour of the solutions of a class of homogeneous second-order difference equations with a single non-constant coefficient. These equations model, for example, the amplitude of oscillation of the weights on a discretely weighted vibrating string. We present several growth theorems. Two examples are also given.
We consider the nonlinear evolution of a disturbance to a mixing layer, with the base profile given by u0(y) = tanh3y rather than the more usual tanh y, so that the first two derivatives of u0 vanish at y = 0. This flow admits three neutral modes, each of which is singular at the critical layer. Using a non-equilibrium nonlinear critical layer analysis, equations governing the evolution of the disturbance are derived and discussed. We find that the disturbance cannot exist on a linear basis, but that nonlinear effects inside the critical layer do permit the disturbance to exist. We also present results of a direct numerical simulation of this flow and briefly discuss the connection between the theory and the simulation.
The rolling of a ball on a horizontal deformable surface was investigated under the assumptions that the ball was a rigid sphere and the surface was elastic. Finite strain theory was used to develop theoretical results which were found to match observations well in cases where the ball and surface involved were such as to ensure no slipping at the region of contact, including a lawn bowl rolling on a grass rink and a billiard ball rolling on carpet. The theory did not match well the behaviour of a golf ball on a grass green because the ball was too light to enforce the no-slipping condition.
This paper considers a nonautonomous cooperative system, in which all the parameters are time-dependent and asymptotically approach periodic functions. We prove that under some appropriate conditions any positive solutions of the system asymptotically approach the unique positive periodic solution of the corresponding periodic system.
In this paper we use classical linear stability theory to analyse the onset of steady and oscillatory Bénard-Marangoni convection in a horizontal layer of fluid in the more physically-relevant case when both the non-dimensional Rayleigh and Marangoni numbers are linearly dependent. We present examples of situations in which there is competition between modes at the onset of convection when the layer is heated from below.
Some multipoint iterative methods without memory, for approximating simple zeros of functions of one variable, are described. For m > 0, n ≧ 0, and k satisfying m + 1 ≧ k > 0, there exist methods which, for each iteration, use one evaluation of f, f′, … f(m) followed by n evaluations of f(k), and have order of convergence m + 2n + 1. In particular, there are methods of order 2(n + 1) which use one function evaluation and n + 1 derivative evaluations per iteration. These methods naturally generalize the known cases n = 0 (Newton's method) and n = 1 (Jarratt's fourth-order method), and are useful if derivative evaluations are less expensive than function evaluations. To establish the order of convergence of the methods we prove some results, which may be of independent interest, on orthogonal and “almost orthogonal” polynomials. Explicit, nonlinear, Runge-Kutta methods for the solution of a special class of ordinary differential equations may be derived from the methods for finding zeros of functions. The theoretical results are illustrated by several numerical examples.