To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In studying the coupled differential equations for the moments of a stochastic process it is often found that the equation for the j th moment involves higher moments. The usual methods of “decoupling” such a system of equations to obtain estimates of the moments are surveyed and shown generally to result in a system of nonlinear simultaneous differential equations which may be readily solved by numerical methods.
Often, estimates of the first and second moments are the main concern. In this case, two further assumptions reported in the literature can be used to simplify the system and avoid the expense of solving the nonlinear equations. These two techniques are evaluated and compared with a new technique. Two processes are analysed, one representing a chemical reaction and the other population growth.
We extend an investigation into the static and dynamic multiplicity exhibited by the reaction of a fuel/air mixture in a continuously stirred tank reactor by considering the effect of adding a chemically inert species to the reaction mixture. The primary bifurcation parameter is taken to be the fuel fraction as this is the most important case from the perspective of fire-retardancy. We show how the addition of the inert species progressively changes the steady-state diagrams and flammability limits. We also briefly outline how heat-sink additives can be incorporated into our scheme.
A new method of field quantization, in which the number operator has the form a*a, is proposed. Representations of this method are considered, particularly in reference to what conditions unique-vacuum state representations are required to satisfy.
Reaction-diffusion systems are widely used to model the population densities of biological species competing for natural resources in their common habitat. It is often not too difficult to establish positive uniform upper bounds on solution components of such systems, but the task of establishing strictly positive uniform lower bounds (when they exist) can be quite troublesome. Two previously established criteria for the permanence (non-extinction and non-explosion) of solutions of general weakly-coupled competition-diffusion systems with diagonally convex reaction terms are used here as background to develop more easily verifiable and concrete conditions for permanence in various well-known competition diffusion models. These models include multi-component reaction-diffusion systems with (i) the by now classical Lotka-Volterra (logistic) reaction terms, (ii) higher order “logistic” interaction between the species, (iii) logistic-logarithmic reaction terms, (iv) Ayala-Gilpin-Ehrenfeld θ-interaction terms (which are used to model Drosophila competition), (v) logistic-exponential interaction between the species, (vi) Schoener-exploitation and (vii) modified Schoener-interference between the species. In (i) a known condition for permanence (for the ODE-system) is recovered, while in (ii)–(vii) new criteria for permanence are established.
Sufficent conditions for controllability of nonlinear neutral Volterra integrodifferential systems are established. Controllability of an infinite-delay neutral Volterra system is also considered.
We survey the role played by optimization in the choice of parameters for Tikhonov regularization of first-kind integral equations. Asymptotic analyses are presented for a selection of practical optimizing methods applied to a model deconvolution problem. These methods include the discrepancy principle, cross-validation and maximum likelihood. The relationship between optimality and regularity is emphasized. New bounds on the constants appearing in asymptotic estimates are presented.
The fractal kinetics curve derived by Savageau is analysed to show that its parameters are not uniquely determined given four appropriately situated data points. Comparison is made with an alternate fractal Michaelis-Menten equation derived by Lopez-Quintela and Casado.
A model governing the combustion of a material is considered. The model consists of two non-linear coupled parabolic equations with initial and boundary conditions. An approximation for the rate of reactant consumption is made to enable the system to the treated by laplace transform. Three simple geometries are considered; namely, an infinite slab, an infinite circular and a sphere. The results obtained are then compared with numerical solutions for spme specific values of the parameters. There is good agreement over time duration for which numerical work was performed.
It is shown that barrier functions applied to the dual linear program can be modified to give multiplier estimates that converge to the solution of the primal problem. Newton's method is considered for implementing this approach and numerical results presented. It has been shown that there is a connection between these methods and Karmarkar's algorithm, but for the class of problems considered further improvements are still required before those methods become competitive with active set methods.
This paper deals with the optimal tracking problem for switched systems, where the control input, the switching times and the switching index are all design variables. We propose a three-stage method for solving this problem. First, we fix the switching times and switching index sequence, which leads to a linear tracking problem, except different subsystems are defined in their respective time intervals. The optimal control and the corresponding cost function obtained depend on the switching signal. This gives rise to an optimal parameter selection problem for which the switching instants and the switching index are to be chosen optimally. In the second stage, the switching index is fixed. A reverse time transformation followed by a time scaling transform are introduced to convert this subproblem into an equivalent standard optimal parameter selection problem. The gradient formula of the cost function is derived. Then the discrete filled function is used in the third stage to search for the optimal switching index. On this basis, a computational method, which combines a gradient-based method, a local search algorithm and a filled function method, is developed for solving this problem. A numerical exampleis solved, showing the effectiveness of the proposed approach.
A variety of approaches have been developed for the detection of features such as edges, lines, and corners in images. Many techniques presuppose the feature type, such as a step edge, and use the differential properties of the luminance function to detect the location of such features. The local energy model provides an alternative approach, detecting a variety of feature types in a single pass by analysing order in the phase components of the Fourier transform of the image. The local energy model is usually implemented by calculating the envelope of the analytic signal associated with the image function. Here we analyse the accuracy of such an implementation, and show that in certain cases the feature location is only approximately given by the local energy model. Orientation selectivity is another aspect of the local energy model, and we show that a feature is only correctly located at a peak of the local energy function when local energy has a zero gradient in two orthogonal directions at the peak point.
In the present paper the problem of reflection of water waves by a nearly vertical porous wall in the presence of surface tension has been investigated. A perturbational approach for the first-order correction has been employed as compared with the corresponding vertical wall problem. A mixed Fourier transform together with the regularity property of the transformed function along the positive real axis has been used to obtain the potential functions along with the reflection coefficients up to first order. Whilst the problem of water of infinite depth is the subject matter of the present paper, a similar approach is applicable to problems associated with water of finite depth.
In this paper, by using critical point theory, we establish some results for the existence of periodic and subharmonic solutions to subquadratic discrete Hamiltonian systems.
We define an integral function Iμ(α, x; a, b) for non-negative integral values of μ by
It is proved that Iμ(α, x; a, b) satisfies a functional recurrence relation which is exploited to find a closed form evaluation of some incomplete integrals. New integral representations of the exponential integral and complementary error functions are found as special cases.
An alternative method via generalised functions is used to obtain the surface integral representation for a finite body in an infinite fluid in Stokes flow. The problem is further generalised to a finite number of intersecting finite bodies in an infinite and semi-infinite fluid. Possible applications to line distributions for axi-symmetric bodies are discussed.
The combustion of a material can be modelled by two coupled parabolic partial differential equations for the temperature and concentration of the material. This paper deals with properties of the solution of these equations inside a cylinder or a sphere and under given initial conditions. Bounds for the variation of the temperature with the initial conditions are first established by considering a decoupled form of the equations. Then the coupled system is used to obtain approximate expressions for the temporal evolution of temperature and concentration.
In this paper, we study the problem of robust H∞ stabilisation with definite attenuance for a class of impulsive switched systems with time-varying uncertainty. A norm-bounded uncertainty is assumed to appear in all the matrices of the state model. An LMI-based method for robust· H∞ stabilisation with definite attenuance via a state feedback control law is developed. A simulation example is presented to demonstrate the effectiveness of the proposed method.