To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Steady magnetohydrodynamic flow of an incompressible micropolar fluid through a pipe of circular cross-section is studied by considering Hall and ionic effects. The fluid motion is due to a constant pressure gradient, and an external uniform magnetic field directed perpendicular to the flow direction is applied. Expressions for the velocity, microrotation, skin friction and flow rate are obtained. The effects of the micropolar parameter, magnetic parameter, Hall parameter and ion-slip parameter on the velocity, microrotation, skin friction and flow rate are discussed.
This paper investigates American puts on a dividend-paying underlying whose volatility is a function of both time and underlying asset price. The asymptotic behaviour of the critical price near expiry is deduced by means of singular perturbation methods. It turns out that if the underlying dividend is greater than the risk-free interest rate, the behaviour of the critical price is parabolic, otherwise an extra logarithmic factor appears, which is similar to the constant volatility case. The results of this paper complement numerical approaches used to calculate the option values and the optimal exercise price at times that are not close to expiry.
The inadequacy of the traditional sliding mode variable structure (SMVS) control method for cruise missiles is addressed. An improved SMVS control method is developed, in which the reaching mode segment of the SMVS control is decomposed into an acceleration accessing segment, a speed keeping segment, and a deceleration buffer segment. A time-fuel optimal control problem is formulated as an optimal control problem involving a switched system with unknown switching times and subject to a continuous state inequality constraint. The new design method is developed based on a control parametrization, a time scaling transform and the constraint transcription method. A sequence of approximate optimal parameter selection problems is obtained with fixed switching time points and a canonical state inequality constraint. Each approximate optimal parameter selection problem can be solved effectively by using existing gradient-based optimization techniques. The convergence of these approximate optimal solutions to the true optimal solution is assured. Simulation results show that the proposed method is highly effective. The response speed of the missile under the control law obtained by the proposed method is improved significantly, while the elevator of the missile is constrained to operate within its permitted range.
In this paper, an efficient computation method is developed for solving a general class of minmax optimal control problems, where the minimum deviation from the violation of the continuous state inequality constraints is maximized. The constraint transcription method is used to construct a smooth approximate function for each of the continuous state inequality constraints. We then obtain an approximate optimal control problem with the integral of the summation of these smooth approximate functions as its cost function. A necessary condition and a sufficient condition are derived showing the relationship between the original problem and the smooth approximate problem. We then construct a violation function from the solution of the smooth approximate optimal control problem and the original continuous state inequality constraints in such a way that the optimal control of the minmax problem is equivalent to the largest root of the violation function, and hence can be solved by the bisection search method. The control parametrization and a time scaling transform are applied to these optimal control problems. We then consider two practical problems: the obstacle avoidance optimal control problem and the abort landing of an aircraft in a windshear downburst.
Many problems in science and engineering are described by nonlinear differential equations, which can be notoriously difficult to solve. Through the interplay of topological and variational ideas, methods of nonlinear analysis are able to tackle such fundamental problems. This graduate text explains some of the key techniques in a way that will be appreciated by mathematicians, physicists and engineers. Starting from elementary tools of bifurcation theory and analysis, the authors cover a number of more modern topics from critical point theory to elliptic partial differential equations. A series of Appendices give convenient accounts of a variety of advanced topics that will introduce the reader to areas of current research. The book is amply illustrated and many chapters are rounded off with a set of exercises.
In this paper we consider an initial-value problem for the nonlinear fourth-order partial differential equation ut+uux+γuxxxx=0, −∞<x<∞, t>0, where x and t represent dimensionless distance and time respectively and γ is a negative constant. In particular, we consider the case when the initial data has a discontinuous expansive step so that u(x,0)=u0(>0) for x≥0 and u(x,0)=0 for x<0. The method of matched asymptotic expansions is used to obtain the large-time asymptotic structure of the solution to this problem which exhibits the formation of an expansion wave. Whilst most physical applications of this type of equation have γ>0, our calculations show how it is possible to infer the large-time structure of a whole family of solutions for a range of related equations.
We prove the existence of a principal eigenvalue associated to the∞-Laplacian plus lower order terms and the Neumann boundarycondition in a bounded smooth domain. As an application we getuniqueness and existence results for the Neumann problem and adecay estimate for viscosity solutions of the Neumann evolutionproblem.
We study the approximation properties of some finite element subspaces ofH(div;Ω) and H(curl;Ω) defined on hexahedral meshes in three dimensions. Thiswork extends results previously obtained for quadrilateral H(div;Ω) finiteelements and for quadrilateral scalar finite element spaces. The finiteelement spaces we consider are constructed starting from a given finitedimensional space of vector fields on the reference cube, which is thentransformed to a space of vector fields on a hexahedron using the appropriatetransform (e.g., the Piola transform) associated to a trilinear isomorphism ofthe cube onto the hexahedron. After determining what vector fields are neededon the reference element to insure O(h) approximation in L2(Ω) andin H(div;Ω) and H(curl;Ω) on the physical element, we study the properties ofthe resulting finite element spaces.
The paper is devoted to the computation of two-phase flows in a porous mediumwhen applying the two-fluid approach. The basic formulation is presented first, together with the main properties of the model. A few basic analytic solutions are then provided, some of them correspondingto solutions of the one-dimensional Riemann problem. Three distinct Finite-Volume schemes are then introduced. The first two schemes, which rely on the Rusanov scheme,are shown to give wrong approximations in some cases involving sharp porous profiles.The third one, which is an extension of a scheme proposed by Kröner and Thanh [SIAM J. Numer. Anal.43 (2006) 796–824]for the computation of single phase flows in varying cross section ducts,provides fair results in all situations. Properties of schemes and numerical results are presented. Analytic tests enable to compute the L1 norm of the error.
This book focuses on the asymptotic behaviour of the probabilities of large deviations of the trajectories of random walks with 'heavy-tailed' (in particular, regularly varying, sub- and semiexponential) jump distributions. Large deviation probabilities are of great interest in numerous applied areas, typical examples being ruin probabilities in risk theory, error probabilities in mathematical statistics, and buffer-overflow probabilities in queueing theory. The classical large deviation theory, developed for distributions decaying exponentially fast (or even faster) at infinity, mostly uses analytical methods. If the fast decay condition fails, which is the case in many important applied problems, then direct probabilistic methods usually prove to be efficient. This monograph presents a unified and systematic exposition of the large deviation theory for heavy-tailed random walks. Most of the results presented in the book are appearing in a monograph for the first time. Many of them were obtained by the authors.
One of the greatest problems hydrology research faces is how to quantify uncertainty, which is inherent in every hydrological process. This overview of uncertainty emphasizes non-orthodox concepts, such as random fields, fractals and fuzziness. This book reviews alternative and conventional methods of risk and uncertainty representation in hydrology and water resources. The water-related applications discussed in the book pertain to areas of strong interest, such as multifractals and climate change impacts. The authors represent a variety of research backgrounds, achieving a broad subject coverage. The material covered provides an important insight into theories of uncertainty related to the field of hydrology. The book is international in its scope, and will be welcomed by researchers and graduate students of hydrology and water resources.
Roustem N. Miftahof, Pohang University of Science and Technology, Republic of Korea,Hong Gil Nam, Pohang University of Science and Technology, Republic of Korea
The human large intestine (colon) is a visceral organ that lies with loops and flexures in varying configurations around the abdomen. The length of the organ is 125–154 cm and its diameter is approximately 4.5 cm. The colon is functionally divided into two parts, the right and left colon. The right colon extends from the caecum and the ascending colon to the mid transverse colon, and the left colon from the mid transverse colon through the descending colon and sigmoid to the rectum.
The wall of the organ consists of four layers – the mucosa, submucosa, circular and longitudinal muscle layers and serosa. The thickness of the wall of the large intestine is relatively constant, h ≈ 0.4–0.5 mm. Cells lining the mucosa and submucosa resemble those found in the small intestine. However, they contain significantly greater numbers of goblet cells. They secrete viscous mucus into the lumen and thus moisturize and lubricate the passage of the waste. The layers play a major role in digestion and absorption of food, water and electrolytes. It is the absorption of fluids and bacterial processing that transform the intraluminal effluent into solid stool.
The longitudinal muscle is organized in three bands – teniae coli. They run from the caecum to the rectum, where they fuse together to form a uniform outer muscular layer. The circular muscle layer is homogeneous and uniformly covers the entire colon.
Roustem N. Miftahof, Pohang University of Science and Technology, Republic of Korea,Hong Gil Nam, Pohang University of Science and Technology, Republic of Korea
The stomach is located in the left upper part of the abdomen immediately below the diaphragm. The shape of the organ is greatly modified by changes within itself and in the surrounding viscera such that no one form can be described as typical. The chief configurations are determined by the amount of the stomach contents, the stage of the digestive process, the degree of development of the gastric musculature and the condition of the adjacent loops of the small and large intestines. The stomach is more or less concave on its right side, convex on its left. The concave border is called the lesser curvature; the convex border, the greater curvature. The region that connects the lower oesophagus with the upper part of the stomach is called the cardia. The uppermost adjacent part to it is the fundus. The fundus adapts to the varying volume of ingested food and it frequently contains a gas bubble, especially after a meal. The largest part of the stomach is known simply as the body. The antrum, the lowermost part of the stomach, is usually funnel-shaped, with its narrow end connecting with the pyloric region. The latter empties into the duodenum – the upper division of the small intestine. The pyloric portion of the stomach tends to curve to the right and slightly upwards and backwards and thus gives the stomach its J-shaped appearance (Fig. 7.1).
Roustem N. Miftahof, Pohang University of Science and Technology, Republic of Korea,Hong Gil Nam, Pohang University of Science and Technology, Republic of Korea
Roustem N. Miftahof, Pohang University of Science and Technology, Republic of Korea,Hong Gil Nam, Pohang University of Science and Technology, Republic of Korea
Mathematical modelling has greatly increased our ability to gain an understanding of many complex biological phenomena. A model can be treated as a hypothesis that can be accepted or rejected on the basis of its ability to predict the experimentally observed results. Numerical simulation techniques are most powerful when a mathematical model is based on understood individual elements of the biological systems, but where their aggregate behaviour cannot be depicted by current theory. In the absence of unexpected interactions, the input–output relationship can be quite accurately calculated. Experimentally inaccessible and sometimes unexpected interactions can be recovered and evaluated by simple comparison of computed versus experimental results. Such use has made mathematical simulation an indispensable tool in the biosciences.
After decades of experimental optimism, there is increasing recognition of the limitations of the in vivo and in vitro approaches to the study of gastrointestinal function. Possible explanations of these limitations are the size, variable contour and inaccessibility of abdominal viscera and most importantly the fact that existing techniques do not allow us to unravel the multilevel, nonlinear interactions that occur in complex physiological reactions. Today, without employment of the methods of mathematical modelling based on the general principles of computational biology our potential to learn about the complex relationships within the gastrointestinal tract would be totally thwarted.
Roustem N. Miftahof, Pohang University of Science and Technology, Republic of Korea,Hong Gil Nam, Pohang University of Science and Technology, Republic of Korea
Roustem N. Miftahof, Pohang University of Science and Technology, Republic of Korea,Hong Gil Nam, Pohang University of Science and Technology, Republic of Korea
Recent technological advances in various fields of applied science have radically transformed the strategies and vision of biomedical research. While only a few decades ago scientists were largely restricted to studying parts of biological systems in isolation, mathematical and computational modelling now enable the use of holistic approaches to analyse data spanning multiple biological levels and traditionally disconnected fields.
Mathematical modelling of organs and systems is a new frontier in the biosciences and promises to provide a comprehensive understanding of complex biological phenomena as more than the sum of their parts. Recognizing this opportunity, many academic centres worldwide have established new focuses on this rapidly expanding field that brings together scientists working in applied mathematics, mechanics, computer science, bioengineering, physics, biology and medicine. A common goal of this effort is to stimulate the study of challenging problems in medicine on the basis of abstraction, modelling and general physical principles.
This book is intended for bioengineers, applied mathematicians, biologists and doctors. It provides a brief and rigorous introduction to the mathematical foundations of thin-shell theory and its applications to nonlinear problems of the biomechanics of hollow abdominal viscera. It should be stressed that the text is not directed towards rigorous mathematical proofs of methods and solutions, but rather to a thorough comprehension, by means of mathematical exercises, of the essentials and the limitations of the theory and its role in the study of biomedical phenomena.
Roustem N. Miftahof, Pohang University of Science and Technology, Republic of Korea,Hong Gil Nam, Pohang University of Science and Technology, Republic of Korea
Roustem N. Miftahof, Pohang University of Science and Technology, Republic of Korea,Hong Gil Nam, Pohang University of Science and Technology, Republic of Korea
Roustem N. Miftahof, Pohang University of Science and Technology, Republic of Korea,Hong Gil Nam, Pohang University of Science and Technology, Republic of Korea