To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
To assess rotational deformity in a broken forearm, an orthopaedic surgeon needs to determine the amount of rotation of the radius from one or more two-dimensional x-rays of the fracture. This requires only simple first-year university mathematics — rotational transformations of ellipses plus a little differential calculus — which yields a general formula giving the rotation angle from information obtained from an x-ray. Preliminary comparisons with experimental results are excellent. This is a practical problem that may be useful to motivate the teaching of conic sections.
In this paper, multigrid methods for solving the biharmonic equation using some nonconforming plate elements are considered. An average algorithm is applied to define the transfer operator. A general analysis of convergence is given.
The point form of the conservation of energy equation is used to give simple and direct proof of results concerning the mean energy flux vector for systems of sinusoidal small amplitude waves in linear conservative systems. No constitutive equation is used explicitly.
In this paper, a function involving the divided difference of the psi function is proved to be completely monotonic, a class of inequalities involving sums is found, and an equivalent relation between complete monotonicity and one of the class of inequalities is established.
Humoral immunity is that aspect of specific immunity that is mediated by B lymphocytes and involves the neutralising of disease-producing microorganisms, called pathogens, by means of antibodies attaching to the pathogen's binding sites. This inhibits the pathogen's entry into target cells. We present a master equation in both discrete and in continuous form for a ligand bound at n sites becoming a ligand bound at m sites in a given interaction time. To track the time-evolution of the antibody-ligand interaction, it is shown that the process is most easily treated classically and that in this case the master equation can be reduced to an equivalent one-dimensional diffusion equation. Thus well-known diffusion theory can be applied to antibody-ligand interactions. We consider three distinct cases depending on whether the probability of antibody binding compared to the probability of dissociation is relatively large, small or comparable, and numerical solutions are given.
An approximate solution is determined for the problem of scattering of water waves by a nearly vertical plate, by reducing it to two mixed boundary-value problems (BVP) for Laplace's equation, using perturbation techniques. While the solution of one of these BVP is well-known, the other BVPs is reduced to the problem of solving two uncoupled problems, and the complete solution of the problem under consideration up to first-order accuracy is derived with a special assumption on the shape of the plate and a related approximation. Known results involving the reflection and transmission coefficients are reproduced.
The linear governing equations of a micropolar thermoelastic medium without energy dissipation are solved to show the existence of four plane waves in a two-dimensional model. The expressions for velocities of these plane waves are obtained. The boundary conditions at the free surface are used to obtain a system of four nonhomogeneous equations. These equations are solved numerically for a particular model to obtain reflection coefficients for the incidence of coupled longitudinal displacement and coupled transverse microrotational waves. These reflection coefficients as well as the energy ratios are computed and are shown graphically with the angle of incidence in the presence and absence of thermal effects.
In this paper we consider the MAP/G/1 queueing system with infinite capacity. In analysis, we use the supplementary variable method to derive the double transform of the queue length and the remaining service time of the customer in service (if any) in the steady state. As will be shown in this paper, our method is very simple and elegant. As a one-dimensional marginal transform of the double transform, we obtain the generating function of the queue length in the system for the MAP/G/1 queue, which is consistent with the known result.
In management science and system engineering, problems with two incommensurate objectives are often detected. Bicriterion optimization finds an optimal solution for the problems. In this paper it is shown that bicriterion discrete optimal control problems can be solved by using a parametric optimization technique with relaxed convexity assumptions. Some necessary optimality conditions for discrete optimal control problems subject to a linear state difference equation are derived. It is shown that in this case no adjoint equation is required.
A functional differential equation for the steady size distribution of a population is derived from the usual partial differential equation governing the size distribution, in the particular case where birth occurs by one individual of size x dividing into α new individuals of size x/α. This leads, in the case of constant growth and birth rate functions, to the functional differential equation y′(x) = −ay(x) + aαy(αx) together with the integral condition We first look at a number of properties that any solution of this equation and boundary condition must have, and then proceed to find the unique solution by the method of Laplace transforms. Results from number theory on the infinite product found in the solution are presented, and it is shown that y(x) tends to a normal distribution as α → 1+.
where e is a small positive parameter, a method is given for the construction of a basis for the solution space.
If A has n linearly independent eigenvector functions, then there exists a choice of these, {si}, with corresponding eigenvalue functions {λi}, such that there is a local basis for solution, that takes the form
where vi is a vector that tends to zero with e. In general, a basis of this form exists only on an interval in which the distinct eigenvalues have their real parts ordered. A construction is provided for continuing any solution across the boundaries of any such interval. These results are proved for a finite or infinite interval for which there are only a finite number of points at which the ordering of the real parts of eigenvalues changes.
We obtain a generalized discrete Hilbert and Hardy-Hilbert inequality with non-conjugate parameters by means of an Euler-Maclaurin summation formula. We derive some general results for homogeneous functions and compare our findings with existing results. We improve some earlier results and apply the results to some special homogeneous functions.
The dual integral equations describing heat flow about a circular Heat Flux Sensor on the surface of a layered medium are derived and discussed, together with the extent to which the Heat Flux Sensor measures the heat flow which would occur in the absence of a Heat Flux Sensor. An asymptotic analysis provides new analytical results supporting those derived previously by numerical methods.
It is suggested that some properties of the general problem of a Heat Flux Sensor on the surface of a multiply-layered medium can be approximated by a lumped-parameter model depending on only four non-dimensional numbers: namely, two non-dimensional linear heat transfer coefficients, and essentially two non-dimensional thermal resistances. Some support for the lumped parameter model is provided.
Optimal control problems governed by semilinear elliptic partial differential equations are considered. No Cesari-type conditions are assumed. By proving an existence theorem and the Pontryagin maximum principle of optimal “state-control” pairs for the corresponding relaxed problems, we establish an existence theorem of optimal pairs for the original problem.