To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Vectors and matrices provide a mathematical framework for formulating and solving linear systems of algebraic equations, which have applications in all areas of engineering and the sciences.Solution methods include Gaussian elimination and the matrix inverse.Vectors play a key role in representing various quantities in mechanics as well as providing the bases for vector spaces.Linear transformations allow one to alter such vector spaces to ones that are more convenient for the task at hand.
Vector and matrix calculus provides a powerful set of tools for analying and manipulating scalars, vectors, and tensors in continuum mechanics.This includes transformations between coordinate systems and provides the foundation for optimization methods.
We show existence and uniqueness of solutions to an initial boundary value problem that entails a pantograph type functional partial differential equation with two advanced nonlocal terms. The problem models cell growth and division into two daughter cells of different sizes. There is a paucity of information about the solution to the problem for an arbitrary initial cell distribution.
A hybrid asymptotic-numerical method is developed to approximate the mean first passage time (MFPT) and the splitting probability for a Brownian particle in a bounded two-dimensional (2D) domain that contains absorbing disks, referred to as “traps”, of asymptotically small radii. In contrast to previous studies that required traps to be spatially well separated, we show how to readily incorporate the effect of a cluster of closely spaced traps by adapting a recently formulated least-squares approach in order to numerically solve certain local problems for the Laplacian near the cluster. We also provide new asymptotic formulae for the MFPT in 2D spatially periodic domains where a trap cluster is centred at the lattice points of an oblique Bravais lattice. Over all such lattices with fixed area for the primitive cell, and for each specific trap set, the average MFPT is smallest for a hexagonal lattice of traps.
Designing engineering components that make optimal use of materials requires consideration of the nonlinear static and dynamic characteristics associated with both manufacturing and working environments. The modeling of these characteristics can only be done through numerical formulation and simulation, which requires an understanding of both the theoretical background and associated computer solution techniques. By presenting nonlinear solid mechanics, dynamic conservation laws and principles, and the associated finite element techniques together, the authors provide in this second book a unified treatment of the dynamic simulation of nonlinear solids. Alongside a number of worked examples and exercises are user instructions, program descriptions, and examples for two MATLAB computer implementations for which source codes are available online. While this book is designed to complement postgraduate courses, it is also relevant to those in industry requiring an appreciation of the way their computer simulation programs work.
Address vector and matrix methods necessary in numerical methods and optimization of linear systems in engineering with this unified text. Treats the mathematical models that describe and predict the evolution of our processes and systems, and the numerical methods required to obtain approximate solutions. Explores the dynamical systems theory used to describe and characterize system behaviour, alongside the techniques used to optimize their performance. Integrates and unifies matrix and eigenfunction methods with their applications in numerical and optimization methods. Consolidating, generalizing, and unifying these topics into a single coherent subject, this practical resource is suitable for advanced undergraduate students and graduate students in engineering, physical sciences, and applied mathematics.
The objective of this paper is to demonstrate that the gradient-constrained discounted Steiner point algorithm (GCDSPA) described in an earlier paper by the authors is applicable to a class of real mine planning problems, by using the algorithm to design a part of the underground access in the Rubicon gold mine near Kalgoorlie in Western Australia. The algorithm is used to design a decline connecting two ore bodies so as to maximize the net present value (NPV) associated with the connector. The connector is to break out from the access infrastructure of one ore body and extend to the other ore body. There is a junction on the connector where it splits in two near the second ore body. The GCDSPA is used to obtain the optimal location of the junction and the corresponding NPV. The result demonstrates that the GCDSPA can be used to solve certain problems in mine planning for which currently available methods cannot provide optimal solutions.
We propose two linearly implicit energy-preserving schemes for the complex modified Korteweg–de Vries equation, based on the invariant energy quadratization method. First, a new variable is introduced and a new Hamiltonian system is constructed for this equation. Then the Fourier pseudospectral method is used for the space discretization and the Crank–Nicolson leap-frog schemes for the time discretization. The proposed schemes are linearly implicit, which is only needed to solve a linear system at each time step. The fully discrete schemes can be shown to conserve both mass and energy in the discrete setting. Some numerical examples are also presented to validate the effectiveness of the proposed schemes.
Image registration is the process of finding an alignment between two or more images so that their appearances match. It has been widely studied and applied to several fields, including medical imaging and biology, where it is related to morphometrics. In this paper, we present a construction of conformal diffeomorphisms which is based on constrained optimization. We consider a set of different penalty terms that aim to enforce conformality, based on discretizations of the Cauchy–Riemann equations and geometric principles, and demonstrate them experimentally on a variety of images.
We propose a variation of the pointwise residual method for solving primal and dual ill-posed linear programming with approximate data, sensitive to small perturbations. The method leads to an auxiliary problem, which is also a linear programming problem. Theorems of existence and convergence of approximate solutions are established and optimal estimates of approximation of initial problem solutions are achieved.
Motivated by the manufacture of carbon fibre components, this paper considers the smooth draping of loosely woven fabric over rigid obstacles, both smooth and nonsmooth. The draped fabric is modelled as the continuum limit of a Chebyshev net of two families of short rigid rods that are freely pivoted at their joints. This approach results in a system of nonlinear hyperbolic partial differential equations whose characteristics are the fibres in the fabric. The analysis of this system gives useful information about the drapability of obstacles of many shapes and also poses interesting theoretical questions concerning well-posedness, smoothness and computability of the solutions.
Let $\boldsymbol{f}$ be a square-integrable, zero-mean, random vector with observable realizations in a Hilbert space H, and let $\boldsymbol{g}$ be an associated square-integrable, zero-mean, random vector with realizations which are not observable in a Hilbert space K. We seek an optimal filter in the form of a closed linear operator X acting on the observable realizations of a proximate vector $\boldsymbol{f}_{\epsilon } \approx \boldsymbol{f}$ that provides the best estimate $\widehat{\boldsymbol{g}}_{\epsilon} = X \boldsymbol{f}_{\epsilon}$ of the vector $\boldsymbol{g}$. We assume the required covariance operators are known. The results are illustrated with a typical example.
We assume that human carrying capacity is determined by food availability. We propose three classes of human population dynamical models of logistic type, where the carrying capacity is a function of the food production index. We also employ an integration-based parameter estimation technique to derive explicit formulas for the model parameters. Using actual population and food production index data, numerical simulations of our models suggest that an increase in food availability implies an increase in carrying capacity, but the carrying capacity is “self-limiting” and does not increase indefinitely.