To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Probability theory has diverse applications in a plethora of fields, including physics, engineering, computer science, chemistry, biology and economics. This book will familiarize students with various applications of probability theory, stochastic modeling and random processes, using examples from all these disciplines and more. The reader learns via case studies and begins to recognize the sort of problems that are best tackled probabilistically. The emphasis is on conceptual understanding, the development of intuition and gaining insight, keeping technicalities to a minimum. Nevertheless, a glimpse into the depth of the topics is provided, preparing students for more specialized texts while assuming only an undergraduate-level background in mathematics. The wide range of areas covered - never before discussed together in a unified fashion – includes Markov processes and random walks, Langevin and Fokker–Planck equations, noise, generalized central limit theorem and extreme values statistics, random matrix theory and percolation theory.
The population dynamics for the replicator equation has been well studied in continuous time, but there is less work that explicitly considers the evolution in discrete time. The discrete-time dynamics can often be justified indirectly by establishing the relevant evolutionary dynamics for the corresponding continuous-time system, and then appealing to an appropriate approximation property. In this paper we study the discrete-time system directly, and establish basic stability results for the evolution of a population defined by a positive definite system matrix, where the population is disrupted by random perturbations to the genotype distribution either through migration or mutation, in each successive generation.
Rumours have become part of our daily lives, and their spread has a negative impact on a variety of human affairs. Therefore, how to control the spread of rumours is an important topic. In this paper, we extend the classic Maki–Thompson model from a deterministic framework to a stochastic framework with a forgetting mechanism, because real-world person-to-person communications are inevitably affected by random factors. By constructing suitable stochastic Lyapunov functions, we show that the asymptotic behaviour of the stochastic rumour model is governed by the basic reproductive number. If this number is less than one, then the solution of the stochastic rumour model oscillates around the rumour-free equilibrium under extra mild conditions, indicating the extinction of the rumour with a probability of one. Otherwise, the solution always fluctuates around the endemic equilibrium under certain parametric restrictions, implying that the rumour will continually persist. In addition, we discuss a possible intervention strategy that stops the spread of rumours by strengthening the intensity of white noise, which is very different from the deterministic rumour model without white noise. Also, numerical simulations are conducted to support our analytical results.