To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The rolling of a ball on a horizontal deformable surface was investigated under the assumptions that the ball was a rigid sphere and the surface was elastic. Finite strain theory was used to develop theoretical results which were found to match observations well in cases where the ball and surface involved were such as to ensure no slipping at the region of contact, including a lawn bowl rolling on a grass rink and a billiard ball rolling on carpet. The theory did not match well the behaviour of a golf ball on a grass green because the ball was too light to enforce the no-slipping condition.
This paper considers a nonautonomous cooperative system, in which all the parameters are time-dependent and asymptotically approach periodic functions. We prove that under some appropriate conditions any positive solutions of the system asymptotically approach the unique positive periodic solution of the corresponding periodic system.
In this paper we use classical linear stability theory to analyse the onset of steady and oscillatory Bénard-Marangoni convection in a horizontal layer of fluid in the more physically-relevant case when both the non-dimensional Rayleigh and Marangoni numbers are linearly dependent. We present examples of situations in which there is competition between modes at the onset of convection when the layer is heated from below.
Some multipoint iterative methods without memory, for approximating simple zeros of functions of one variable, are described. For m > 0, n ≧ 0, and k satisfying m + 1 ≧ k > 0, there exist methods which, for each iteration, use one evaluation of f, f′, … f(m) followed by n evaluations of f(k), and have order of convergence m + 2n + 1. In particular, there are methods of order 2(n + 1) which use one function evaluation and n + 1 derivative evaluations per iteration. These methods naturally generalize the known cases n = 0 (Newton's method) and n = 1 (Jarratt's fourth-order method), and are useful if derivative evaluations are less expensive than function evaluations. To establish the order of convergence of the methods we prove some results, which may be of independent interest, on orthogonal and “almost orthogonal” polynomials. Explicit, nonlinear, Runge-Kutta methods for the solution of a special class of ordinary differential equations may be derived from the methods for finding zeros of functions. The theoretical results are illustrated by several numerical examples.
Sparse grids are the basis for efficient high dimensional approximation and have recently been applied successfully to predictive modelling. They are spanned by a collection of simpler function spaces represented by regular grids. The sparse grid combination technique prescribes how approximations on a collection of anisotropic grids can be combined to approximate high dimensional functions.
In this paper we study the parallelisation of fitting data onto a sparse grid. The computation can be done entirely by fitting partial models on a collection of regular grids. This allows parallelism over the collection of grids. In addition, each of the partial grid fits can be parallelised as well, both in the assembly phase, where parallelism is done over the data, and in the solution stage using traditional parallel solvers for the resulting PDEs. Using a simple timing model we confirm that the most effective methods are obtained when both types of parallelism are used.
This paper presents an efficient method for generating the class of all twelve-tone rows which are transpositions of their own retrograde-inversions. It is shown here that the members of this class can be obtained from a subclass of those rows whose first six notes are ascending and whose first note is C. The number of twelve-tone rows in this subclass is 192, and a complete listing is given in an appendix to this paper. The theory as developed here can be applied to tone rows having any even number of notes.
For the linear quadratic control problem with delay, a lower bound for the performance index is obtained by elementary methods. Using this bound, two important a posteriori error estimates are derived. The first one measures the deviation of the performance index while the second is for the deviation of the state and control variables from the optimal solution.
Planar hinged segmented bodies have been used to represent models of biomechanical systems. One characteristic of a segmented body moving under gravitational acceleration and torques between segments is the possibility that the body's segments spin through more than a revolution or past a natural limit, and a computational mechanism to stop such behaviour should be provided. This could be done by introducing angle constraints between segments, and computational models utilising optimal control are studied here. Three models to maintain angle constraints between segments are proposed and compared. These models are: all-time angle constraints, a restoring torque in the state equations and an exponential penalty model. The models are applied to a 2-D three-segment body to test the behaviour of each model when optimising torques to minimise an objective. The optimisation is run to find torques so that the end effector of the body follows the trajectory of a half-circle. The result shows the behaviour of each model in maintaining the angle constraints. The all-time constraints case exhibits a behaviour of not allowing torques (at a solution) which makes segments move past the constraints, while the other two show a flexibility in handling the angle constraints which is more similar to what occurs in a real biomechanical system.
A harmonic function in the interior of a polygon is the double layer potential of a distribution satisfying a second kind integral equation. This may be solved numerically by Galerkin's method using piecewise polynomials as basis functions. But the corners produce singularities in the distribution and the kernel of the integral equation; and these reduce the order of convergence. This is offset by grading the mesh, and the orders of convergence and superconvergence are restored to those for a smooth boundary.
When a line sink is placed beneath the free surface of an otherwise quiescent fluid of infinite depth, two different flow types are now known to be possible. One type of flow involves the fluid being drawn down toward the sink, and in the other type, a stagnation point forms at the surface immediately above the position of the sink.
This paper investigates the second of these two flow types, which involves a free-surface stagnation point. The effects of surface tension are included, and even when small, these are shown to have a very significant effect on the overall solution behaviour. We demonstrate by direct numerical calculation that there are regions of genuine non-uniqueness in the nonlinear solution, when the surface-tension parameter does not vanish. In addition, an asymptotic solution valid for small Froude number is derived.
The extent to which an asymmetric low-aspect-ratio flat ship is wetted when planing at infinite Froude number is investigated, with emphasis placed on its relationship with the shape of the hull. Two cases are considered. First the hull is assumed to have two laterally-asymmetric leading edges and, secondly, the hull is assumed to be yawed sufficiently for one of the leading edges to become a trailing edge. In the first case, the relationship involves a pair of coupled integral equations, but in the second case there is a complication by the occurrence of hull-wake interaction.