To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In a recent paper the authors give upper and lower bounds for the motion of the moving boundary for the classical Stefan problem for plane, cylindrical and spherical geometries. On comparison with the exact Neumann solution for the plane geometry and no surface radiation the bounds obtained are seen to be quite adequate for practical purposes except for the lower bound at small Stefan numbers. Here improved lower bounds are obtained which in some measure remove this inadequacy. Time dependent surface conditions are also examined and the new lower bounds obtained for the classical problem are illustrated numerically.
We study the propagation of electromagnetic waves (EMWs) in both isotropic and anisotropic ferromagnetic material media. As the EMW propagates through linear charge-free isotropic and anisotropic ferromagnetic media, it is found that the magnetic field and the magnetic induction components of the EMW and the magnetization excitations of the medium are in the form of solitons. However, the electromagnetic soliton gets damped and decelerates in the case of a charged medium. In the case of a charge-free nonlinear ferromagnetic medium we obtain results similar to those for the linear case.
Modified versions of the Euler midpoint formula are given for functions whose derivatives are either functions of bounded variation, Lipschitzian functions or functions in Lp-spaces. The results are applied to quadrature formulae.
The problem of planning the annual intakes to a university course, in which there are capacity constraints on the total enrolment, so as to produce a steady transition into an eventual no-growth situation is formulated as a linear program. The special structure of the problem is exploited to find a particular, optimal solution and to show that the addition of integrality constraints on the intakes poses no additional difficulty. The usefulness of the proposed methods is illustrated with an example from the University of Adelaide.
Diffusion in the presence of high-diffusivity paths is an important issue of current technology. In metals, high-diffusivity paths are identified with dislocations, grain boundaries, free surfaces and internal microcracks. In pourous media such as rocks, fissures provide a system of high-flow paths. Recently, based on a continuum approach, these phenomena have been modelled, resulting in coupled systems of partial differential equations of parabolic type for the concentrations in bulk and in the high-diffusivity paths. This theory assumes that each point of the medium is simultaneously occupied by more than one diffusion or flow path. Here a simple discrete random walk model of diffusion in a medium with double diffusivity is given.
The free surface due to a submerged source in a fluid of finite depth at infinite Froude number is reconsidered. A conformal transformation technique is used to formulate this problem as an integral equation for the free-surface angle. An elementary solution is found for the equation, which results in a closed form expression for the free-surface elevation. Comparison is made with previous numerical solutions.
This paper demonstrates feasibility of aerodynamically-supported motion of a thin sheet near to a plane wall. Steady equilibrium is possible for uniform sheets only if they are deformable, and a set of possible equilibrium shapes is determined.
In studying the coupled differential equations for the moments of a stochastic process it is often found that the equation for the j th moment involves higher moments. The usual methods of “decoupling” such a system of equations to obtain estimates of the moments are surveyed and shown generally to result in a system of nonlinear simultaneous differential equations which may be readily solved by numerical methods.
Often, estimates of the first and second moments are the main concern. In this case, two further assumptions reported in the literature can be used to simplify the system and avoid the expense of solving the nonlinear equations. These two techniques are evaluated and compared with a new technique. Two processes are analysed, one representing a chemical reaction and the other population growth.
We extend an investigation into the static and dynamic multiplicity exhibited by the reaction of a fuel/air mixture in a continuously stirred tank reactor by considering the effect of adding a chemically inert species to the reaction mixture. The primary bifurcation parameter is taken to be the fuel fraction as this is the most important case from the perspective of fire-retardancy. We show how the addition of the inert species progressively changes the steady-state diagrams and flammability limits. We also briefly outline how heat-sink additives can be incorporated into our scheme.
A new method of field quantization, in which the number operator has the form a*a, is proposed. Representations of this method are considered, particularly in reference to what conditions unique-vacuum state representations are required to satisfy.
Reaction-diffusion systems are widely used to model the population densities of biological species competing for natural resources in their common habitat. It is often not too difficult to establish positive uniform upper bounds on solution components of such systems, but the task of establishing strictly positive uniform lower bounds (when they exist) can be quite troublesome. Two previously established criteria for the permanence (non-extinction and non-explosion) of solutions of general weakly-coupled competition-diffusion systems with diagonally convex reaction terms are used here as background to develop more easily verifiable and concrete conditions for permanence in various well-known competition diffusion models. These models include multi-component reaction-diffusion systems with (i) the by now classical Lotka-Volterra (logistic) reaction terms, (ii) higher order “logistic” interaction between the species, (iii) logistic-logarithmic reaction terms, (iv) Ayala-Gilpin-Ehrenfeld θ-interaction terms (which are used to model Drosophila competition), (v) logistic-exponential interaction between the species, (vi) Schoener-exploitation and (vii) modified Schoener-interference between the species. In (i) a known condition for permanence (for the ODE-system) is recovered, while in (ii)–(vii) new criteria for permanence are established.
Sufficent conditions for controllability of nonlinear neutral Volterra integrodifferential systems are established. Controllability of an infinite-delay neutral Volterra system is also considered.
We survey the role played by optimization in the choice of parameters for Tikhonov regularization of first-kind integral equations. Asymptotic analyses are presented for a selection of practical optimizing methods applied to a model deconvolution problem. These methods include the discrepancy principle, cross-validation and maximum likelihood. The relationship between optimality and regularity is emphasized. New bounds on the constants appearing in asymptotic estimates are presented.
The fractal kinetics curve derived by Savageau is analysed to show that its parameters are not uniquely determined given four appropriately situated data points. Comparison is made with an alternate fractal Michaelis-Menten equation derived by Lopez-Quintela and Casado.
A model governing the combustion of a material is considered. The model consists of two non-linear coupled parabolic equations with initial and boundary conditions. An approximation for the rate of reactant consumption is made to enable the system to the treated by laplace transform. Three simple geometries are considered; namely, an infinite slab, an infinite circular and a sphere. The results obtained are then compared with numerical solutions for spme specific values of the parameters. There is good agreement over time duration for which numerical work was performed.
It is shown that barrier functions applied to the dual linear program can be modified to give multiplier estimates that converge to the solution of the primal problem. Newton's method is considered for implementing this approach and numerical results presented. It has been shown that there is a connection between these methods and Karmarkar's algorithm, but for the class of problems considered further improvements are still required before those methods become competitive with active set methods.
This paper deals with the optimal tracking problem for switched systems, where the control input, the switching times and the switching index are all design variables. We propose a three-stage method for solving this problem. First, we fix the switching times and switching index sequence, which leads to a linear tracking problem, except different subsystems are defined in their respective time intervals. The optimal control and the corresponding cost function obtained depend on the switching signal. This gives rise to an optimal parameter selection problem for which the switching instants and the switching index are to be chosen optimally. In the second stage, the switching index is fixed. A reverse time transformation followed by a time scaling transform are introduced to convert this subproblem into an equivalent standard optimal parameter selection problem. The gradient formula of the cost function is derived. Then the discrete filled function is used in the third stage to search for the optimal switching index. On this basis, a computational method, which combines a gradient-based method, a local search algorithm and a filled function method, is developed for solving this problem. A numerical exampleis solved, showing the effectiveness of the proposed approach.