To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This paper presents a two-step formulation for the dynamic analysis of generalised planar linkages. First, a rigid body is replaced by a dynamically equivalent constrained system of particles and Newton's second law is used to study the motion of the particles without introducing any rotational coordinates. The translational motion of the constrained particles represents the general motion of the rigid body both translationally and rotationally. The simplicity and the absence of any rotational coordinates from the final form of the equations of motion are considered the main advantages of this formulation. A velocity transformation is then used to transform the equations of motion to a reduced set in terms of selected relative joint variables. For an open-chain, this process automatically eliminates all of the non-working constraint forces and leads to efficient integration of the equations of motion. For a closed-chain, suitable joints should be cut and some cut-joint constraint equations should be included. An example of a closed-chain is used to demonstrate the generality and efficiency of the proposed method.
Simple proofs are given of improved results of Brown and Shepp which are useful in calculations with fractal sets. A new inequality for convex functions is also obtained.
We consider an optimal control problem with, possibly time-dependent, constraints on state and control variables, jointly. Using only elementary methods, we derive a sufficient condition for optimality. Although phrased in terms reminiscent of the necessary condition of Pontryagin, the sufficient condition is logically independent, as can be shown by a simple example.
An optimal control problem governed by a class of delay semilinear differential equations is studied. The existence of an optimal control is proven, and the maximum principle and approximating schemes are found. As applications, three examples are discussed.
In mathematical programming, an important tool is the use of active set strategies to update the current solution of a linear system after a rank one change in the constraint matrix. We show how to update the general solution of a linear system obtained by use of the scaled ABS method when the matrix coefficient is subjected to a rank one change.
Various initial and boundary value problems for a 2-dimensional reaction-diffusion equation are studied numerically by an explicit Finite Difference Method (FDM), a Galerkin and a Petrov-Galerkin Finite Element Method (FEM). The results not only show the transition processes from different local initial disturbances to quasitravelling waves, but also demonstrate the long term behaviour of the solutions, which is determined by the system itself and does not depend on the details of the initial disturbances.
A parallel algorithm is developed for the numerical solution of the diffusion equation ut = uxx, 0 < x < t < T, subject to u(x, 0) = f(x), ux(X, t) = g(t) and the specification of mass .
We consider an age-structured population model achieved by modifying the classical Sharpe-Lotka-McKendrick model, incorporating an overcrowding effect or competition for resources term. This term depends on the whole population rather than on any specific age group, in the case of overcrowding or limitation of resources. We investigate the solutions for arbitrary initial conditions. We consider the existence of a steady age distribution and its stability and are able to determine this for a simple illustrative case. If the non-trivial steady age distribution is unstable, there is a critical initial population size beyond which the population explodes. This watershed is independent of the shape of the initial age distribution.
A collocation method for Symm's integral equation on an interval (a first-kind integral equation with logarithmic kernel), in which the basis functions are Chebyshev polynomials multiplied by an appropriate singular function and the collocation points are Chebyshev points, is analysed. The novel feature lies in the analysis, which introduces Sobolev norms that respect the singularity structure of the exact solution at the ends of the interval. The rate of convergence is shown to be faster than any negative power of n, the degree of the polynomial space, if the driving term is smooth.
A simple and efficient numerical technique for the buckling analysis of thin elastic plates of arbitrary shape is proposed. The approach is based upon the combination of the standard Finite Element Method with the constant deflection contour method. Several representative plate problems of irregular boundaries are treated and where possible, the obtained results are validated against corresponding results in the literature.
Taylor's model of dispersion simply describes the long-term spread of material along a pipe, channel or river. However, often we need multi-mode models to resolve finer details in space and time. Here we construct zonal models of dispersion via the new principle of matching their long-term evolution with that of the original problem. Using centre manifold techniques this is done straightforwardly and systematically. Furthermore, this approach provides correct initial and boundary conditions for the zonal models. We expect the proposed principle of matched centre manifold evolution to be useful in a wide range of modelling problems.
The qualitative behavior of positive solutions of the neutral-delay two-species Lotka-Volterra competitive system with several discrete delays is investigated. Sufficient conditions are obtained for the local asymptotic stability of the positive steady state. In fact, some of these sufficient conditions are also necessary except at those critical values. Results on the oscillatory and non-oscillatory characteristics of the positive solutions are also included.
Instantaneous streamlines, particle pathlines and pressure contours for a cavitation bubble in the vicinity of a free surface and near a rigid boundary are obtained. During the collapse phase of a bubble near a free surface, the streamlines show the existence of a stagnation point between the bubble and the free surface which occurs at a different location from the point of maximum pressure. This phenomenon exists when the initial distance of the bubble is sufficiently close to the free surface for the bubble and free surface to move in opposite directions during collapse of the bubble. Pressure calculations during the collapse of a cavitation bubble near a rigid boundary show that the maximum pressure is substantially larger than the equivalent Rayleigh bubble of the same volume.