To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Viro method plays an important role in the study of topology of real algebraic hypersurfaces. The T-primitive hypersurfaces we study here appear as the result of Viro's combinatorial patchworking when one starts with a primitive triangulation. We show that the Euler characteristic of the real part of such a hypersurface of even dimension is equal to the signature of its complex part. We explain how this can be understood in tropical geometry. We use this result to prove the existence of maximal surfaces in some three-dimensional toric varieties, namely those corresponding to Nakajima polytopes.
For a fixed parabolic subalgebra 𝔭 of we prove that the centre of the principal block 𝒪0𝔭 of the parabolic category 𝒪 is naturally isomorphic to the cohomology ring H*(ℬ𝔭) of the corresponding Springer fibre. We give a diagrammatic description of 𝒪0𝔭 for maximal parabolic 𝔭 and give an explicit isomorphism to Braden’s description of the category PervB(G(k,n)) of Schubert-constructible perverse sheaves on Grassmannians. As a consequence Khovanov’s algebra ℋn is realised as the endomorphism ring of some object from PervB(G(n,n)) which corresponds under localisation and the Riemann–Hilbert correspondence to a full projective–injective module in the corresponding category 𝒪0𝔭. From there one can deduce that Khovanov’s tangle invariants are obtained from the more general functorial invariants in [C. Stroppel, Categorification of the Temperley Lieb category, tangles, and cobordisms via projective functors, Duke Math. J. 126(3) (2005), 547–596] by restriction.
In this paper, we show that there is an equivalence between the 2-category of smooth Deligne–Mumford stacks with torus embeddings and actions and the 1-category of stacky fans. To this end, we prove two main results. The first is related to a combinatorial aspect of the 2-category of toric algebraic stacks defined by I. Iwanari [Logarithmic geometry, minimal free resolutions and toric algebraic stacks, Preprint (2007)]; we establish an equivalence between the 2-category of toric algebraic stacks and the 1-category of stacky fans. The second result provides a geometric characterization of toric algebraic stacks. Logarithmic geometry in the sense of Fontaine–Illusie plays a central role in obtaining our results.
We continue our study of the reduction of PEL Shimura varieties with parahoric level structure at primes p at which the group defining the Shimura variety ramifies. We describe ‘good’ p-adic integral models of these Shimura varieties and study their étale local structure. In the present paper we mainly concentrate on the case of unitary groups for a ramified quadratic extension. Some of our results are applications of the theory of twisted affine flag varieties that we developed in a previous paper.
In this paper we prove that a generalized version of the Minimal Resolution Conjecture given by Mustaţă holds for certain general sets of points on a smooth cubic surface $X\,\subset \,{{\mathbb{P}}^{3}}$. The main tool used is Gorenstein liaison theory and, more precisely, the relationship between the free resolutions of two linked schemes.
We give a presentation of the moduli stack of toric vector bundles with fixed equivariant total Chern class as a quotient of a fine moduli scheme of framed bundles by a linear group action. This fine moduli scheme is described explicitly as a locally closed subscheme of a product of partial flag varieties cut out by combinatorially specified rank conditions. We use this description to show that the moduli of rank three toric vector bundles satisfy Murphy’s law, in the sense of Vakil. The preliminary sections of the paper give a self-contained introduction to Klyachko’s classification of toric vector bundles.
We continue the study, begun in [F. Russo, Varieties with quadratic entry locus. I, Preprint (2006), math. AG/0701889] , of secant defective manifolds having ‘simple entry loci’. We prove that such manifolds are rational and describe them in terms of tangential projections. Using also the work of [P. Ionescu and F. Russo, Conic-connected manifolds, Preprint (2006), math. AG/0701885], their classification is reduced to the case of Fano manifolds of high index, whose Picard group is generated by the hyperplane section class. Conjecturally, the former should be linear sections of rational homogeneous manifolds. We also provide evidence that the classification of linearly normal dual defective manifolds with Picard group generated by the hyperplane section should follow along the same lines.
The description of irreducible representations of a group G can be seen as a problem in harmonic analysis; namely, decomposing a suitable space of functions on G into irreducibles for the action of G×G by left and right multiplication. For a split p-adic reductive group G over a local non-archimedean field, unramified irreducible smooth representations are in bijection with semisimple conjugacy classes in the ‘Langlands dual’ group. We generalize this description to an arbitrary spherical variety X of G as follows. Irreducible unramified quotients of the space are in natural ‘almost bijection’ with a number of copies of AX*/WX, the quotient of a complex torus by the ‘little Weyl group’ of X. This leads to a description of the Hecke module of unramified vectors (a weak analog of geometric results of Gaitsgory and Nadler), and an understanding of the phenomenon that representations ‘distinguished’ by certain subgroups are functorial lifts. In the course of the proof, rationality properties of spherical varieties are examined and a new interpretation is given for the action, defined by Knop, of the Weyl group on the set of Borel orbits.
We generalize Gaeta’s theorem to the family of determinantal schemes. In other words, we show that the schemes defined by minors of a fixed size of a matrix with polynomial entries belong to the same G-biliaison class of a complete intersection whenever they have maximal possible codimension, given the size of the matrix and of the minors that define them.
We introduce the notion of an alternate product of Frobenius manifolds and we give, after Ciocan-Fontanine et al., an interpretation of the Frobenius manifold structure canonically attached to the quantum cohomology of G(r,n+1) in terms of alternate products. We also investigate the relationship with the alternate Thom–Sebastiani product of Laurent polynomials.
We study the stability map from the rigid analytic space of semistable points in P3 to convex sets in the building of Sp2 over a local field and construct a pure affinoid covering of the space of stable points.
Here we study the dimension δ(m, X) of the general fibers of the m-Gaussian map of a singular n-dimensional variety X ⊂ Pn. We show that for all integers a, b, c, d with n ≦ a < b ≦ c < d ≦ N − 1 and a + d = b + c we have δ (a, X) + δ(d, X) > δ(b, X) + δ(c, X). If δ(X, N − 1) is very large we give some classification results which extend to the singular case some results of Ein.
Let G be a unitary group of rank one over a non-archimedean local field K (whose residue field has a characteristic ≠ 2). We consider the action of G on the projective plane. A G(K) equivariant map from the set of points in the projective plane that are semistable for every maximal K split torus in G to the set of convex subsets of the building of G(K) is constructed. This map gives rise to an equivariant map from the set of points that are stable for every maximal K split torus to the building. Using these maps one describes a G(K) invariant pure affinoid covering of the set of stable points. The reduction of the affinoid covering is given.