To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We compute the global log canonical thresholds of quasi-smooth well-formed complete intersection log del Pezzo surfaces of amplitude 1 in weighted projective spaces. As a corollary we show the existence of orbifold Kähler—Einstein metrics on many of them.
Let $G$ be a simple algebraic group. A closed subgroup $H$ of $G$ is said to be spherical if it has a dense orbit on the flag variety $G/B$ of $G$. Reductive spherical subgroups of simple Lie groups were classified by Krämer in 1979. In 1997, Brundan showed that each example from Krämer’s list also gives rise to a spherical subgroup in the corresponding simple algebraic group in any positive characteristic. Nevertheless, up to now there has been no classification of all such instances in positive characteristic. The goal of this paper is to complete this classification. It turns out that there is only one additional instance (up to isogeny) in characteristic 2 which has no counterpart in Krämer’s classification. As one of our key tools, we prove a general deformation result for subgroup schemes that allows us to deduce the sphericality of subgroups in positive characteristic from the same property for subgroups in characteristic zero.
We consider higher secant varieties to Veronese varieties. Most points on the rth secant variety are represented by a finite scheme of length r contained in the Veronese variety – in fact, for a general point, the scheme is just a union of r distinct points. A modern way to phrase it is: the smoothable rank is equal to the border rank for most polynomials. This property is very useful for studying secant varieties, especially, whenever the smoothable rank is equal to the border rank for all points of the secant variety in question. In this note, we investigate those special points for which the smoothable rank is not equal to the border rank. In particular, we show an explicit example of a cubic in five variables with border rank 5 and smoothable rank 6. We also prove that all cubics in at most four variables have the smoothable rank equal to the border rank.
We give an explicit way of writing down a minimal set of generators for the canonical ideal of a nondegenerate curve, or of a more general smooth projective curve in a toric surface, in terms of its defining Laurent polynomial.
By using row convex tableaux, we study the section rings of Bott–Samelson varieties of type A. We obtain flat deformations and standard monomial type bases of the section rings. In a separate section, we investigate a three-dimensional Bott–Samelson variety in detail and compute its Hilbert polynomial and toric degenerations.
We study the space of linear difference equations with periodic coefficients and (anti)periodic solutions. We show that this space is isomorphic to the space of tame frieze patterns and closely related to the moduli space of configurations of points in the projective space. We define the notion of a combinatorial Gale transform, which is a duality between periodic difference equations of different orders. We describe periodic rational maps generalizing the classical Gauss map.
We compute the Chow groups and the Fulton–MacPherson operational Chow cohomology ring for a class of singular rational varieties including toric varieties. The computation is closely related to the weight filtration on the ordinary cohomology of these varieties. We use the computation to answer one of the open problems about operational Chow cohomology: it does not have a natural map to ordinary cohomology.
We introduce a new class of autoequivalences that act on the derived categories of certain vector bundles over Grassmannians. These autoequivalences arise from Grassmannian flops: they generalize Seidel–Thomas spherical twists, which can be seen as arising from standard flops. We first give a simple algebraic construction, which is well suited to explicit computations. We then give a geometric construction using spherical functors which we prove is equivalent.
We prove that every curve on a separably rationally connected variety is rationally equivalent to a (non-effective) integral sum of rational curves. That is, the Chow group of 1-cycles is generated by rational curves. Applying the same technique, we also show that the Chow group of 1-cycles on a separably rationally connected Fano complete intersection of index at least 2 is generated by lines. As a consequence, we give a positive answer to a question of Professor Totaro about integral Hodge classes on rationally connected 3-folds. And by a result of Professor Voisin, the general case is a consequence of the Tate conjecture for surfaces over finite fields.
We prove an analogue of Koszul duality for category $ \mathcal{O} $ of a reductive group $G$ in positive characteristic $\ell $ larger than $1$ plus the number of roots of $G$. However, there are no Koszul rings, and we do not prove an analogue of the Kazhdan–Lusztig conjectures in this context. The main technical result is the formality of the dg-algebra of extensions of parity sheaves on the flag variety if the characteristic of the coefficients is at least the number of roots of $G$ plus $2$.
We obtain, via the formalism of tensor actions, a complete classification of the localizing subcategories of the stable derived category of any affine scheme that has hypersurface singularities or is a complete intersection in a regular scheme; in particular, this classifies the thick subcategories of the singularity categories of such rings. The analogous result is also proved for certain locally complete intersection schemes. It is also shown that from each of these classifications one can deduce the (relative) telescope conjecture.
In this paper we examine different problems regarding complete intersection varieties of high multidegree in a smooth complex projective variety. First we prove an existence theorem for jet differential equations that generalizes a theorem of Diverio. Then we show how one can deduce hyperbolicity for generic complete intersections of high multidegree and high codimension from the known results on hypersurfaces. Finally, motivated by a conjecture of Debarre, we focus on the positivity of the cotangent bundle of complete intersections, and prove some results towards this conjecture; among other things, we prove that a generic complete intersection surface of high multidegree in a projective space of dimension at least four has an ample cotangent bundle.
In their paper [Exceptional sequences of invertible sheaves on rational surfaces, Compositio Math. 147 (2011), 1230–1280], Hille and Perling associate to every cyclic full strongly exceptional sequence of line bundles on a toric weak del Pezzo surface a toric system, which defines a new toric surface. We interpret this construction as an instance of mirror symmetry and extend it to a duality on the set of toric weak del Pezzo surfaces equipped with a cyclic full strongly exceptional sequence.
While the intersection of the Grassmannian Bruhat decompositions for all coordinate flags is an intractable mess, it turns out that the intersection of only the cyclic shifts of one Bruhat decomposition has many of the good properties of the Bruhat and Richardson decompositions. This decomposition coincides with the projection of the Richardson stratification of the flag manifold, studied by Lusztig, Rietsch, Brown–Goodearl–Yakimov and the present authors. However, its cyclic-invariance is hidden in this description. Postnikov gave many cyclic-invariant ways to index the strata, and we give a new one, by a subset of the affine Weyl group we call bounded juggling patterns. We call the strata positroid varieties. Applying results from [A. Knutson, T. Lam and D. Speyer, Projections of Richardson varieties, J. Reine Angew. Math., to appear, arXiv:1008.3939 [math.AG]], we show that positroid varieties are normal, Cohen–Macaulay, have rational singularities, and are defined as schemes by the vanishing of Plücker coordinates. We prove that their associated cohomology classes are represented by affine Stanley functions. This latter fact lets us connect Postnikov’s and Buch–Kresch–Tamvakis’ approaches to quantum Schubert calculus.
The saturation theorem of Knutson and Tao concerns the nonvanishing of Littlewood–Richardson coefficients. In combination with work of Klyachko, it implies Horn’s conjecture about eigenvalues of sums of Hermitian matrices. This eigenvalue problem has a generalization to majorized sums of Hermitian matrices, due to S. Friedland. We further illustrate the common features between these two eigenvalue problems and their connection to Schubert calculus of Grassmannians. Our main result gives a Schubert calculus interpretation of Friedland’s problem, via equivariant cohomology of Grassmannians. In particular, we prove a saturation theorem for this setting. Our arguments employ the aforementioned work together with recent work of H. Thomas and A. Yong.
A central problem in liaison theory is to decide whether every arithmetically Cohen–Macaulay subscheme of projective $n$-space can be linked by a finite number of arithmetically Gorenstein schemes to a complete intersection. We show that this can indeed be achieved if the given scheme is also generically Gorenstein and we allow the links to take place in an $(n+ 1)$-dimensional projective space. For example, this result applies to all reduced arithmetically Cohen–Macaulay subschemes. We also show that every union of fat points in projective 3-space can be linked in the same space to a union of simple points in finitely many steps, and hence to a complete intersection in projective 4-space.
For an arbitrary connected reductive group $G$, we consider the motivic integral over the arc space of an arbitrary $ \mathbb{Q} $-Gorenstein horospherical $G$-variety ${X}_{\Sigma } $ associated with a colored fan $\Sigma $ and prove a formula for the stringy $E$-function of ${X}_{\Sigma } $ which generalizes the one for toric varieties. We remark that, in contrast to toric varieties, the stringy $E$-function of a Gorenstein horospherical variety ${X}_{\Sigma } $ may be not a polynomial if some cones in $\Sigma $ have nonempty sets of colors. Using the stringy $E$-function, we can formulate and prove a new smoothness criterion for locally factorial horospherical varieties. We expect that this smoothness criterion holds for arbitrary spherical varieties.
We show how the techniques of Voevodsky’s proof of the Milnor conjecture and the Voevodsky–Rost proof of its generalization the Bloch–Kato conjecture can be used to study counterexamples to the classical Lüroth problem. By generalizing a method due to Peyre, we produce for any prime number $\ell $ and any integer $n\geq 2$, a rationally connected, non-rational variety for which non-rationality is detected by a non-trivial degree $n$ unramified étale cohomology class with $\ell $-torsion coefficients. When $\ell = 2$, the varieties that are constructed are furthermore unirational and non-rationality cannot be detected by a torsion unramified étale cohomology class of lower degree.
We prove that the space of smooth rational curves of degree $e$ on a general complete intersection of multidegree $(d_1, \ldots , d_m)$ in $\mathbb {P}^n$ is irreducible of the expected dimension if $\sum _{i=1}^m d_i \lt (2n+m+1)/3$ and $n$ is sufficiently large. This generalizes a result of Harris, Roth and Starr [Rational curves on hypersurfaces of low degree, J. Reine Angew. Math. 571 (2004), 73–106], and is achieved by proving that the space of conics passing through any point of a general complete intersection has constant dimension if $\sum _{i=1}^m d_i$ is small compared to $n$.