To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Bernstein, Frenkel, and Khovanov have constructed a categorification of tensor products of the standard representation of $\mathfrak {sl}_2$, where they use singular blocks of category $\mathcal {O}$ for $\mathfrak {sl}_n$ and translation functors. Here we construct a positive characteristic analogue using blocks of representations of $\mathfrak {s}\mathfrak {l}_n$ over a field $\mathbf {k}$ of characteristic p with zero Frobenius character, and singular Harish-Chandra character. We show that the aforementioned categorification admits a Koszul graded lift, which is equivalent to a geometric categorification constructed by Cautis, Kamnitzer, and Licata using coherent sheaves on cotangent bundles to Grassmanians. In particular, the latter admits an abelian refinement. With respect to this abelian refinement, the stratified Mukai flop induces a perverse equivalence on the derived categories for complementary Grassmanians. This is part of a larger project to give a combinatorial approach to Lusztig’s conjectures for representations of Lie algebras in positive characteristic.
The symbolic analytic spread of an ideal $I$ is defined in terms of the rate of growth of the minimal number of generators of its symbolic powers. In this article, we find upper bounds for the symbolic analytic spread under certain conditions in terms of other invariants of $I$. Our methods also work for more general systems of ideals. As applications, we provide bounds for the (local) Kodaira dimension of divisors, the arithmetic rank, and the Frobenius complexity. We also show sufficient conditions for an ideal to be a set-theoretic complete intersection.
This work is concerned with Bielawski’s hyperkähler slices in the cotangent bundles of homogeneous affine varieties. One can associate such a slice with the data of a complex semisimple Lie group $G$, a reductive subgroup $H\subseteq G$, and a Slodowy slice $S\subseteq \mathfrak{g}:=\text{Lie}(G)$, defining it to be the hyperkähler quotient of $T^{\ast }(G/H)\times (G\times S)$ by a maximal compact subgroup of $G$. This hyperkähler slice is empty in some of the most elementary cases (e.g., when $S$ is regular and $(G,H)=(\text{SL}_{n+1},\text{GL}_{n})$, $n\geqslant 3$), prompting us to seek necessary and sufficient conditions for non-emptiness.
We give a spherical-geometric characterization of the non-empty hyperkähler slices that arise when $S=S_{\text{reg}}$ is a regular Slodowy slice, proving that non-emptiness is equivalent to the so-called $\mathfrak{a}$-regularity of $(G,H)$. This $\mathfrak{a}$-regularity condition is formulated in several equivalent ways, one being a concrete condition on the rank and complexity of $G/H$. We also provide a classification of the $\mathfrak{a}$-regular pairs $(G,H)$ in which $H$ is a reductive spherical subgroup. Our arguments make essential use of Knop’s results on moment map images and Losev’s algorithm for computing Cartan spaces.
We approach non-divisorial base loci of big and nef line bundles on irreducible symplectic varieties. While for K3 surfaces, only divisorial base loci can occur, nothing was known about the behaviour of non-divisorial base loci for more general irreducible symplectic varieties. We determine the base loci of all big and nef line bundles on the Hilbert scheme of two points on very general K3 surfaces of genus two and on their birational models. Remarkably, we find an ample line bundle with a non-trivial base locus in codimension two. We deduce that, generically in the moduli spaces of polarized K3[2]-type varieties, the polarization is base point free.
For a split reductive group $G$ over a finite field, we show that the intersection (cohomology) motive of the moduli stack of iterated $G$-shtukas with bounded modification and level structure is defined independently of the standard conjectures on motivic $t$-structures on triangulated categories of motives. This is in accordance with general expectations on the independence of $\ell$ in the Langlands correspondence for function fields.
We introduce and study various categories of (equivariant) motives of (versal) flag varieties. We relate these categories with certain categories of parabolic (Demazure) modules. We show that the motivic decomposition type of a versal flag variety depends on the direct sum decomposition type of the parabolic module. To do this we use localization techniques of Kostant and Kumar in the context of generalized oriented cohomology as well as the Rost nilpotence principle for algebraic cobordism and its generic version. As an application, we obtain new proofs and examples of indecomposable Chow motives of versal flag varieties.
We systematically produce algebraic varieties with torus action by constructing them as suitably embedded subvarieties of toric varieties. The resulting varieties admit an explicit treatment in terms of toric geometry and graded ring theory. Our approach extends existing constructions of rational varieties with torus action of complexity one and delivers all Mori dream spaces with torus action. We exhibit the example class of ‘general arrangement varieties’ and obtain classification results in the case of complexity two and Picard number at most two, extending former work in complexity one.
We describe generators of disguised residual intersections in any commutative Noetherian ring. It is shown that, over Cohen–Macaulay rings, the disguised residual intersections and algebraic residual intersections are the same, for ideals with sliding depth. This coincidence provides structural results for algebraic residual intersections in a quite general setting. It is shown how the DG-algebra structure of Koszul homologies affects the determination of generators of residual intersections. It is shown that the Buchsbaum–Eisenbud family of complexes can be derived from the Koszul–Čech spectral sequence. This interpretation of Buchsbaum–Eisenbud families has a crucial rule to establish the above results.
We explore the constraints imposed by Poincaré duality on the resonance varieties of a graded algebra. For a three-dimensional Poincaré duality algebra A, we obtain a fairly precise geometric description of the resonance varieties ${\cal R}^i_k(A)$.
Let $G/H$ be a homogeneous variety and let $X$ be a $G$-equivariant embedding of $G/H$ such that the number of $G$-orbits in $X$ is finite. We show that the equivariant Borel–Moore homology of $X$ has a filtration with associated graded module the direct sum of the equivariant Borel–Moore homologies of the $G$-orbits. If $T$ is a maximal torus of $G$ such that each $G$-orbit has a $T$-fixed point, then the equivariant filtration descends to give a filtration on the ordinary Borel–Moore homology of $X$. We apply our findings to certain wonderful compactifications as well as to double flag varieties.
We study the Iitaka–Kodaira dimension of nef relative anti-canonical divisors. As a consequence, we prove that given a complex projective variety with klt singularities, if the anti-canonical divisor is nef, then the dimension of a general fibre of the maximal rationally connected fibration is at least the Iitaka–Kodaira dimension of the anti-canonical divisor.
In this article, I give a crystalline characterization of abelian varieties amongst the class of smooth projective varieties with trivial tangent bundles in characteristic $p>0$. Using my characterization, I show that a smooth, projective, ordinary variety with trivial tangent bundle is an abelian variety if and only if its second crystalline cohomology is torsion-free. I also show that a conjecture of KeZheng Li about smooth projective varieties with trivial tangent bundles in characteristic $p>0$ is true for smooth projective surfaces. I give a new proof of a result by Li and prove a refinement of it. Based on my characterization of abelian varieties, I propose modifications of Li’s conjecture, which I expect to be true.
Given a root system, the Weyl chambers in the co-weight lattice give rise to a real toric variety, called the real toric variety associated with the Weyl chambers. We compute the integral cohomology groups of real toric varieties associated with the Weyl chambers of type Cn and Dn, completing the computation for all classical types.
We study the equivariant oriented cohomology ring $\mathtt{h}_{T}(G/P)$ of partial flag varieties using the moment map approach. We define the right Hecke action on this cohomology ring, and then prove that the respective Bott–Samelson classes in $\mathtt{h}_{T}(G/P)$ can be obtained by applying this action to the fundamental class of the identity point, hence generalizing previously known results of Chow groups by Brion, Knutson, Peterson, Tymoczko and others. Our main result concerns the equivariant oriented cohomology theory $\mathfrak{h}$ corresponding to the 2-parameter Todd genus. We give a new interpretation of Deodhar’s parabolic Kazhdan–Lusztig basis, i.e., we realize it as some cohomology classes (the parabolic Kazhdan–Lusztig (KL) Schubert classes) in $\mathfrak{h}_{T}(G/P)$. We make a positivity conjecture, and a conjecture about the relationship of such classes with smoothness of Schubert varieties. We also prove the latter in several special cases.
We bring examples of toric varieties blown up at a point in the torus that do not have finitely generated Cox rings. These examples are generalizations of our earlier work, where toric surfaces of Picard number 1 were studied. In this article we consider toric varieties of higher Picard number and higher dimension. In particular, we bring examples of weighted projective 3-spaces blown up at a point that do not have finitely generated Cox rings.
Let $\unicode[STIX]{x1D719}$ be a post-critically finite branched covering of a two-sphere. By work of Koch, the Thurston pullback map induced by $\unicode[STIX]{x1D719}$ on Teichmüller space descends to a multivalued self-map—a Hurwitz correspondence ${\mathcal{H}}_{\unicode[STIX]{x1D719}}$—of the moduli space ${\mathcal{M}}_{0,\mathbf{P}}$. We study the dynamics of Hurwitz correspondences via numerical invariants called dynamical degrees. We show that the sequence of dynamical degrees of ${\mathcal{H}}_{\unicode[STIX]{x1D719}}$ is always non-increasing and that the behavior of this sequence is constrained by the behavior of $\unicode[STIX]{x1D719}$ at and near points of its post-critical set.
We give new estimates of lengths of extremal rays of birational type for toric varieties. We can see that our new estimates are the best by constructing some examples explicitly. As applications, we discuss the nefness and pseudo-effectivity of adjoint bundles of projective toric varieties. We also treat some generalizations of Fujita’s freeness and very ampleness for toric varieties.
This article is the first in a series of two in which we study the vanishing cycles of curves in toric surfaces. We give a list of possible obstructions to contract vanishing cycles within a given complete linear system. Using tropical means, we show that any non-separating simple closed curve is a vanishing cycle whenever none of the listed obstructions appears.
Employing a simple and direct geometric approach, we prove formulas for a large class of degeneracy loci in types B, C, and D, including those coming from all isotropic Grassmannians. The results unify and generalize previous Pfaffian and determinantal formulas. Specializing to the Grassmannian case, we recover the remarkable theta- and eta-polynomials of Buch, Kresch, Tamvakis, and Wilson. Our method yields streamlined proofs which proceed in parallel for all four classical types, substantially simplifying previous work on the subject. In an appendix, we develop some foundational algebra and prove several Pfaffian identities. Another appendix establishes a basic formula for classes in quadric bundles.
We consider smooth, complex quasiprojective varieties $U$ that admit a compactification with a boundary, which is an arrangement of smooth algebraic hypersurfaces. If the hypersurfaces intersect locally like hyperplanes, and the relative interiors of the hypersurfaces are Stein manifolds, we prove that the cohomology of certain local systems on $U$ vanishes. As an application, we show that complements of linear, toric, and elliptic arrangements are both duality and abelian duality spaces.