To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
If a weighted Euler transformation is applied to the asymptotic series for ezE1(z) the remainder can be expressed as an integral. Examination of this integral shows that for a transformation of given order the smallest term of the resulting series remains at approximately a constant distance from the start of the series. If, however, there is no restriction on the order of transformation the remainder may be decreased to zero by increasing the number of terms used, but if z is close to the negative real axis the rate of decrease is small. A more general theorem for alternating real series and Taylor's series is also given.