We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let Qn denote the number of times where a simple random walk reaches its maximum, where the random walk starts at the origin and returns to the origin after 2n steps. Such random walks play an important role in probability and statistics. In this paper the distribution and the moments of Qn, are considered and their asymptotic behavior is studied.
Ahues (1987) and Bouldin (1990) have given sufficient conditions for the strong stability of a sequence (Tn) of operators at an isolated eigenvalue of an operator T. This paper provides a unified treatment of their results and also generalizes so as to facilitate their application to a broad class of operators.
We derive the MacLaurin series for the moments of the system time and the delay with respect to the parameters in the service time or interarrival time distributions in the GI/G/1 queue. The coefficients in these series are expressed in terms of the derivatives of the interarrival time density function evaluated at zero and the moments of the service time distribution, which can be easily calculated through a simple recursive procedure. The light traffic derivatives can be obtained from these series. For the M/G/1 queue, we are able to recover the formulas for the moments of the system time and the delay, including the Pollaczek–Khinchin mean-value formula.
Properties of the Lebesgue function associated with interpolation at the equidistant nodes , are investigated. In particular, it is proved that the relative maxima of the Lebesgue function are strictly decreasing from the outside towards the middle of the interval [0, n], and upper and lower bounds, and an asymptotic expansion, are obtained for the smallest maximum when n is odd.
Let Q denote the Banach space (under the sup norm) of quasi-continuous functions on the unit interval [0, 1]. Let ℳ denote the closed convex cone comprised of monotone nondecreasing functions on [0, 1]. For f and g in Q and 1 < p < ∞, let hp denote the best Lp-simultaneous approximant of f and g by elements of ℳ. It is shown that hp converges uniformly as p → ∞ to a best L∞-simultaneous approximant of f and g by elements of ℳ. However, this convergence is not true in general for any pair of bounded Lebesgue measurable functions. If f and g are continuous, then each hp is continuous; so is limp→∞ hp = h∞.
Suppose λ is an isolated eigenvalue of the (bounded linear) operator T on the Banach space X and the algebraic multiplicity of λ is finite. Let Tn be a sequence of operators on X that converge to T pointwise, that is, Tnx → Tx for every x ∈ X. If ‖(T − Tn)Tn‖ and ‖Tn(T − Tn)‖ converge to 0 then Tn is strongly stable at λ.
Let λ0 be a semisimple eigenvalue of an operator T0. Let Γ0 be a circle with centre λs0 containing no other spectral value of T0. Some lower bounds are obtained for the convergence radius of the power series for the spectral projection P(t) and for trace T(t)P(t) associated with linear perturbation family T(t) = T0 + tV0 and the circle Γ0. They are useful when T0 is a member of a sequence (Tn) which approximates an operator T in a collectively compact manner. These bounds result from a modification of Kato's method of majorizing series, based on an idea of Redont. I λ0 is simple, it is shown that the same lower bound are valid for the convergence radius of a power series yielding an eigenvector of T(t).
This paper deals with Hermite-Fejér interpolation of functions defined on a semi-infinite interval but the nodes are equally spaced. It is shown that, under certain conditions, the interpolation process has poor approximation properties.
Let λ be a simple eigenvalue of a bounded linear operator T on a Banach space X, and let (Tn) be a resolvent operator approximation of T. For large n, let Sn denote the reduced resolvent associated with Tn and λn, the simple eigenvalue of Tn near λ. It is shown that under the assumption that all the spectral points of T which are nearest to λ belong to the discrete spectrum of T. This is used to find error estimates for the Rayleigh-Schrödinger series for λ and ϕ with initial terms λn and ϕn, where P (respectively, ϕn) is an eigenvector of T (respectively, Tn) corresponding to λ (respectively, λn), and for the Kato-Rellich perturbation series for PPn, where P (respectively, Pn) is the spectral projection for T (respectively, Tn) associated with λ (respectively, λn).
According to an extension of a classical theorem of Bernstein, due to C. Herz, a function on Rn belonging to a Besov space of appropriate order has an absolutely convergent Fourier transform. We establish extensions of this result to Cartan motion groups, for Besov spaces defined with respect to both isotropic and non-isotropic differences.
We obtain various refinements and generalizations of a classical inequality of S. N. Bernstein on trigonometric polynomials. Some of the results take into account the size of one or more of the coefficients of the trigonometric polynomial in question. The results are obtained using interpolation formulas.
Let G be a locally compact abeian group, (μρ) a net of bounded Radon measures on G. In this paper we consider conditions under which (μρ) is saturated in Lp (G) and apply these results to the Fejér and Picard approximation processes.
We describe on the Heisenberg group Hn a family of spaces M(h, X) of functions which play a role analogous to the trigonometric polynomials in Tn or the functions of exponential type in Rn. In particular we prove that for the space M(h, X), Jackson's theorem holds in the classical form while Bernstein's inequality hold in a modified form. We end of the paper with a characterization of the functions of the Lipschitz space by the behavior of their best approximations by functions in the space M(h, X).
An operator form of the Euler-Maclaurin sum formula is obtained, expressing the sum of the Euler-Maclaurin infinite series in a closed derivation, whose spectrum is compact, not equal to {0}, and does not have 0 as a clusterpoint, as the difference between a summation operator and an antiderivation which is the local inverse of the derivation.
The paper is concerned with the determination of the degree of convergence of a sequence of linear operators connected with the Fourier series of a function of class Lp (p > 1) to that function and some inverse results in relating the convergence to the classes of functions. In certain cases one can obtain the saturation results too. In all cases Lp norm is used.
In 1953 P. P. Korovkin proved that if (Tn) is a sequence of positive linear operators defined on the space C of continuous real 2 π-periodic functions and lim Tnf = f uniformly for f = 1, cos and sin, then lim Tnf = f uniformly for all f ∈ C. Quantitative versions of this result have been given, where the rate of convergence is given in terms of that of the test functions 1, cos and sin, and the modulus of continuity of f. We extend this result by giving a quantitative version of Korovkin's theorem for compact connected abelian groups.
In 1953 P. P. Korovkin proved that if (Tn) is a sequence of positive linear operators defined on the space C of continuous real 2π-periodic functions and limn→rTnf = f uniformly for f = 1, cos and sin. then limn→rTnf = f uniformly for all f∈C. We extend this result to spaces of continuous functions defined on a locally compact abelian group G, with the test family {1, cos, sin} replaced by a set of generators of the character group of G.
Here we consider a problem on weighted (0, 2) interpolation. We choose the interpolatory conditions in such a way that we get the polynomial of degree ≤2n−1, satisfying those conditions. Moreover we prove that the sequence of these interpolatory polynomials under certain conditions converges uniformly to a function belonging to the Zygmund class.
If a weighted Euler transformation is applied to the asymptotic series for ezE1(z) the remainder can be expressed as an integral. Examination of this integral shows that for a transformation of given order the smallest term of the resulting series remains at approximately a constant distance from the start of the series. If, however, there is no restriction on the order of transformation the remainder may be decreased to zero by increasing the number of terms used, but if z is close to the negative real axis the rate of decrease is small. A more general theorem for alternating real series and Taylor's series is also given.