We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper we quantify the efficiency of parallelism in systems that are prone to failures and exhibit power law processing delays. We characterize the performance of two prototype schemes of parallelism, redundant and split, in terms of both the power law exponent and exact asymptotics of the delay distribution tail. We also develop the optimal splitting scheme which ensures that split always outperforms redundant.
In this paper we study the asymptotic behavior of a general class of product-form closed queueing networks as the population size grows large. We first characterize the asymptotic behavior of the normalization constant for the stationary distribution of the network in exact order. This result then enables us to establish the asymptotic behavior of the system performance metrics, which extends a number of well-known asymptotic results to exact order. We further derive new, computationally simple approximations for performance metrics that significantly improve upon existing approximations for large-scale networks. In addition to their direct use for the analysis of large networks, these new approximations are particularly useful for reformulating large-scale queueing network optimization problems into more easily solvable forms, which we demonstrate with an optimal capacity planning example.
A positive recurrent, aperiodic Markov chain is said to be long-range dependent (LRD) when the indicator function of a particular state is LRD. This happens if and only if the return time distribution for that state has infinite variance. We investigate the question of whether other instantaneous functions of the Markov chain also inherit this property. We provide conditions under which the function has the same degree of long-range dependence as the chain itself. We illustrate our results through three examples in diverse fields: queueing networks, source compression, and finance.
We propose an efficient semi-numerical approach to compute the steady-state probability distribution for the number of requests at arbitrary and at arrival time instants in PH/M/c-like systems with homogeneous servers in which the inter-arrival time distribution is represented by an acyclic set of memoryless phases. Our method is based on conditional probabilities and results in a simple computationally stable recurrence. It avoids the explicit manipulation of potentially large matrices and involves no iteration. Owing to the use of conditional probabilities, it delays the onset of numerical issues related to floating-point underflow as the number of servers and/or phases increases. For generalized Coxian distributions, the computational complexity of the proposed approach grows linearly with the number of phases in the distribution.
We consider a stochastic control model for a queueing system driven by a two-dimensional fractional Brownian motion with Hurst parameter 0 < H < 1. In particular, when H > ½, this model serves to approximate a controlled two-station tandem queueing model with heavy-tailed ON/OFF sources in heavy traffic. We establish the weak convergence results for the distribution of the state process and construct an explicit stationary state process associated with given controls. Based on suitable coupling arguments, we show that each state process couples with its stationary counterpart and we use it to represent the long-run average cost functional in terms of the stationary process. Finally, we establish the existence result of an optimal control, which turns out to be independent of the initial data.
We establish some interesting duality results for Markov-modulated fluid flow models. Though fluid flow models are continuous-state analogues of quasi-birth-and-death processes, some duality results do differ by the inclusion of a scaling factor.
Optimal control of stochastic bandwidth-sharing networks is typically difficult. In order to facilitate the analysis, deterministic analogues of stochastic bandwidth-sharing networks, the so-called fluid models, are often taken for analysis, as their optimal control can be found more easily. The tracking policy translates the fluid optimal control policy back to a control policy for the stochastic model, so that the fluid optimality can be achieved asymptotically when the stochastic model is scaled properly. In this work we study the efficiency of the tracking policy, that is, how fast the fluid optimality can be achieved in the stochastic model with respect to the scaling parameter. In particular, our result shows that, under certain conditions, the tracking policy can be as efficient as feedback policies.
Consider the following classical problem in ad-hoc networks. Suppose that n devices are distributed uniformly at random in a given region. Each device is allowed to choose its own transmission radius, and two devices can communicate if and only if they are within the transmission radius of each other. The aim is to (quickly) establish a connected network of low average and maximum degree. In this paper we present the first efficient distributed protocols that, in poly-logarithmically many rounds and with high probability, set up a connected network with O(1) average degree and O(log n) maximum degree. Our algorithms are based on the following result, which is a nontrivial consequence of classical percolation theory. Suppose that each device sets up its transmission radius in order to reach the K closest devices. There exists a universal constant K (independent of n) such that, with high probability, there will be a unique giant component (i.e. a connected component of size Θ(n)). Furthermore, all remaining components will be of size O(log2n). This leads to an efficient distributed probabilistic test for membership in the giant component, which can be used in a second phase to achieve full connectivity.
We consider a system with Poisson arrivals and independent and identically distributed service times, where requests in the system are served according to the state-dependent (Cohen's generalized) processor-sharing discipline, where each request receives a service capacity that depends on the actual number of requests in the system. For this system, we derive expressions as well as tight insensitive upper bounds for the moments of the conditional sojourn time of a request with given required service time. The bounds generalize and extend corresponding results, recently given for the single-server processor-sharing system in Cheung et al. (2006) and for the state-dependent processor-sharing system with exponential service times by the authors (2008). Analogous results hold for the waiting times. Numerical examples for the M/M/m-PS and M/D/m-PS systems illustrate the given bounds.
We consider a stochastic control model driven by a fractional Brownian motion. This model is a formal approximation to a queueing network with an ON-OFF input process. We study stochastic control problems associated with the long-run average cost, the infinite-horizon discounted cost, and the finite-horizon cost. In addition, we find a solution to a constrained minimization problem as an application of our solution to the long-run average cost problem. We also establish Abelian limit relationships among the value functions of the above control problems.
We consider an infinite sequence of customers of types and an infinite sequence of servers of types where a server of type j can serve a subset of customer types C(j) and where a customer of type i can be served by a subset of server types S(i). We assume that the types of customers and servers in the infinite sequences are random, independent, and identically distributed, and that customers and servers are matched according to their order in the sequence, on a first-come–first-served (FCFS) basis. We investigate this process of infinite bipartite matching. In particular, we are interested in the rate ri,j that customers of type i are assigned to servers of type j. We present a countable state Markov chain to describe this process, and for some previously unsolved instances, we prove ergodicity and existence of limiting rates, and calculate ri,j.
In this paper we study efficient simulation algorithms for estimating P(X›x), where X is the total time of a job with ideal time T that needs to be restarted after a failure. The main tool is importance sampling, where a good importance distribution is identified via an asymptotic description of the conditional distribution of T given X›x. If T≡t is constant, the problem reduces to the efficient simulation of geometric sums, and a standard algorithm involving a Cramér-type root, γ(t), is available. However, we also discuss an algorithm that avoids finding the root. If T is random, particular attention is given to T having either a gamma-like tail or a regularly varying tail, and to failures at Poisson times. Different types of conditional limit occur, in particular exponentially tilted Gumbel distributions and Pareto distributions. The algorithms based upon importance distributions for T using these asymptotic descriptions have bounded relative error as x→∞ when combined with the ideas used for a fixed t. Nevertheless, we give examples of algorithms carefully designed to enjoy bounded relative error that may provide little or no asymptotic improvement over crude Monte Carlo simulation when the computational effort is taken into account. To resolve this problem, an alternative algorithm using two-sided Lundberg bounds is suggested.
Parallel processing is a way to use resources efficiently by processing several jobs simultaneously on different servers. In a well-controlled environment where the status of the servers and the jobs are well known, everything is nearly deterministic and replicating jobs on different servers is obviously a waste of resources. However, in a poorly controlled environment where the servers are unreliable and/or their capacity is highly variable, it is desirable to design a system that is robust in the sense that it is not affected by the poorly performing servers. By replicating jobs and assigning them to several different servers simultaneously, we not only achieve robustness but we can also make the system more efficient under certain conditions so that the jobs are processed at a faster rate overall. In this paper we consider the option of replicating jobs and study how the performance of different ‘degrees’ of replication, ranging from no replication to full replication, affects the performance of a system of parallel servers.
There is increasing interest in the cost of railway infrastructure access as a variety of private companies operate trains with different lengths over a common rail network. It is important to have a method for evaluating the cost of adding an additional train to a railway timetable. This is particularly so for single line track with occasional passing loops. The concept of a fixed loop capacity is extended to one that is dependent on the trains. We develop a model for scheduling a heterogeneous set of trains on single line systems with loops. Our method minimizes the total weighted delay. A Lagrangian relaxation technique is used that relaxes the capacity constraints for track segments and super segments. We measure the delay for each train and the total weighted delay for the heterogeneous set of trains. Our model allows us to investigate the robustness of the weighted delay to variation in the departure time of individual trains. The paper demonstrates that a Lagrangian relaxation heuristic provides optimal train schedules for instances of small heterogeneous train sets. The method is used primarily to check the effectiveness of heuristic algorithms commonly used to find schedules for practical problems.
A first kind Frobenius graph is a Cayley graph Cay(K,S) on the Frobenius kernel of a Frobenius group such that S=aH for some a∈K with 〈aH〉=K, where H is of even order or a is an involution. It is known that such graphs admit ‘perfect’ routing and gossiping schemes. A circulant graph is a Cayley graph on a cyclic group of order at least three. Since circulant graphs are widely used as models for interconnection networks, it is thus highly desirable to characterize those which are Frobenius of the first kind. In this paper we first give such a characterization for connected 4-valent circulant graphs, and then describe optimal routing and gossiping schemes for those which are first kind Frobenius graphs. Examples of such graphs include the 4-valent circulant graph with a given diameter and maximum possible order.
We consider a model of random access (slotted-aloha-type) communication networks of general topology. Assuming that network links receive exogenous arrivals of packets for transmission, we seek dynamic distributed random access strategies whose goal is to keep all network queues stable. We prove that two dynamic strategies, which we collectively call queue length based random access (QRA), ensure stability as long as the rates of exogenous arrival flows are within the network saturation rate region. The first strategy, QRA-I, can be viewed as a random-access-model counterpart of the max-weight scheduling rule, while the second strategy, QRA-II, is a counterpart of the exponential (EXP) rule. The two strategies induce different dynamics of the queues in the fluid scaling limit, which can be exploited for the quality-of-service control in applications.
The TCP window size process can be modeled as a piecewise-deterministic Markov process that increases linearly and experiences downward jumps at Poisson times. We present a transient analysis of this window size process. Our main result is the Laplace transform of the transient moments. Formulae for the integer and fractional moments are derived, as well as an explicit characterization of the speed of convergence to steady state. Central to our approach are the infinitesimal generator and Dynkin's martingale.
We develop a conservation law for a multi-class GI/GI/1 queue operating under a general work-conserving scheduling discipline. For single-class single-server queues, conservation laws have been obtained for both nonanticipating and anticipating disciplines with general service time distributions. For multi-class single-server queues, conservation laws have been obtained for (i) nonanticipating disciplines with exponential service time distributions and (ii) nonpreemptive nonanticipating disciplines with general service time distributions. The unifying conservation law we develop generalizes already existing conservation laws. In addition, it covers popular nonanticipating multi-class time-sharing disciplines such as discriminatory processor sharing (DPS) and generalized processor sharing (GPS) with general service time distributions. As an application, we show that the unifying conservation law can be used to compare the expected unconditional response time under two scheduling disciplines.
We introduce and study a new model: zero-automatic queues. Roughly, zero-automatic queues are characterized by a special buffering mechanism evolving like a random walk on some infinite group or monoid. The salient result is that all stable zero-automatic queues have a product form stationary distribution and a Poisson output process. When considering the two simplest and extremal cases of zero-automatic queues, we recover the simple M/M/1 queue and Gelenbe's G-queue with positive and negative customers.
We consider a constant rate traffic which shares a buffer with a random cross traffic. A first come first served or priority service discipline is applied at the buffer. After service at the first buffer the constant rate traffic moves to a play-out buffer. Both buffers provide service at constant rate and infinite waiting room. We investigate logarithmic large and moderate deviation asymptotics for the tail probabilities of the steady-state queue length distribution at the play-out buffer for long-range dependent cross traffic in critical loading. We characterize the asymptotic behavior of the cross traffic which leads to a large queue length at the play-out buffer and compare it to the one for renewal cross traffic.