To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let (X, cX) be a convex projective surface equipped with a real structure. The space of stable maps carries different real structures induced by cX and any order two element τ of permutation group Sk acting on marked points. Each corresponding real part ℝτ is a real normal projective variety. As the singular locus is of codimension bigger than two, these spaces thus carry a first Stiefel–Whitney class for which we determine a representative in the case k = c1(X)d − 1 where c1(X) is the first Chern class of X. Namely, we give a homological description of these classes in term of the real part of boundary divisors of the space of stable maps.
Let M be an n-dimensional space-like hypersurface in a locally symmetric Lorentz space, with n(n−1)R=κH(κ>0) and satisfying certain additional conditions on the sectional curvature. Denote by S and H the squared norm of the second fundamental form and the mean curvature of M, respectively. We show that if the mean curvature is nonnegative and attains its maximum on M, then:
(1) if H2<4(n−1)c/n2, M is totally umbilical;
(2) if H2=4(n−1)c/n2, M is totally umbilical or is an isoparametric hypersurface;
(3) if H2>4(n−1)c/n2 and S satisfies some pinching conditions, M is totally umbilical or is an isoparametric hypersurface.
We give a formula for the Laplacian of the second fundamental form of an n-dimensional compact minimal submanifold M in a complex projective space CPm. As an application of this formula, we prove that M is a geodesic minimal hypersphere in CPm if the sectional curvature satisfies K≥1/n, if the normal connection is flat, and if M satisfies an additional condition which is automatically satisfied when M is a CR submanifold. We also prove that M is the complex projective space CPn/2 if K≥3/n, and if the normal connection of M is semi-flat.
Matsumoto [10] remarked that some locally projectively flat Finsler spaces of non-zero constant curvature may be Riemannian spaces of non-zero constant curvature. The Riemannian connection, however, must be metric compatible, and this requirement places restrictions on the geodesic coefficients for the Finsler space in the form of a system of partial differential equations. In this paper, we derive this system of equations for the case where the geodesic coefficients are quadratic in the tangent space variables yi, and determine the solutions. We recover two standard Remannian metrics of non-zero constant curvature from this class of solutions.
Recently, Chen established a sharp relationship between the Ricci curvature and the squared mean curvature for a submanifold in a Riemannian space form with arbitrary codimension. Afterwards, we dealt with similar problems for submanifolds in complex space forms.
In the present paper, we obtain sharp inequalities between the Ricci curvature and the squared mean curvature for submanifolds in Sasakian space forms. Also, estimates of the scalar curvature and the k-Ricci curvature respectively, in terms of the squared mean curvature, are proved.
A pseudo-Riemannian manifold is said to be timelike (spacelike) Osserman if the Jordan form of the Jacobi operator Kx is independent of the particular unit timelike (spacelike) tangent vector X. The first main result is that timelike (spacelike) Osserman manifold (M, g) of signature (2, 2) with the diagonalizable Jacobi operator is either locally rank-one symmetric or flat. In the nondiagonalizable case the characteristic polynomial of Kx has to have a triple zero, which is the other main result. An important step in the proof is based on Walker's study of pseudo-Riemannian manifolds admitting parallel totally isotropic distributions. Also some interesting additional geometric properties of Osserman type manifolds are established. For the nondiagonalizable Jacobi operators some of the examples show a nature of the Osserman condition for Riemannian manifolds different from that of pseudo-Riemannian manifolds.
We characterize four-dimensional generalized complex forms and construct an Einstein and weakly *-Einstein Hermitian manifold with pointwise constant holomorphic sectional curvature which is not globally constant.
We begin a study of invariant isometric immersions into Riemannian manifolds (M, g) equipped with a Riemannian flow generated by a unit Killing vector field ξ. We focus our attention on those (M, g) where ξ is complete and such that the reflections with respect to the flow lines are global isometries (that is, (M, g) is a Killing-transversally symmetric space) and on the subclass of normal flow space forms. General results are derived and several examples are provided.
In this paper we consider O. Bonnet III-isometry (or BIII-isometry) of surfaces in 3-dimensional Euclidean space E3 Suppose a map F: M → M* is a diffeomorphism, and F* (III*) = III, ki(m) = k*i (m*), i = 1, 2, where m ∈ M, m* ∈ M*, m* = F (m), ki and k*i are the principal curvatures of surfaces M and M* at the points m and m*, respectively, III and III* are the third fundmental forms of M and M*, respectively. In this case, we call F an O. Bonnet III-isometry from M to M*. O. Bonnet I-isometries were considered in references [1]-[5].
We distinguish three cases about BIII-surfaces, which admits a non-trivial BIII-ismetry. We obtain some geometric properties of BIII-surfaces and BIII-isometries in these three cases; see Theorems 1, 2, 3 (in Section 2). We study some special BIII-surfaces: the minimal BIII-surfaces; BIII-surfaces of revolution; and BIII-surfaces with constant Gaussian curvature; see Theorems 4, 5, 6 (in Section 3).
We study real hypersurfaces of a complex projection space and show that there are no such hypersurfaces with harmonic curvature on which the structure vector is principal.
We consider the extent of certain complete hypersurfaces of Euclidean space. We prove that every complete hypersurface in En+1 with sectional curvature bounded below and non-positive scalar curvature has at least (n − 1) unbounded coordinate functions.
This paper introduces a tensor that contains the Riemannian curvature tensor and the conformal curvature tensor as special examples in the Riemannian space (Mn, g), and by using this tensor we define C-semi-symmetric space. In this paper, we have the following main result: if there is a non-trivial concircular transformation between two C-semi-symmetric spaces, then both spaces are of quasi-constant curvature.
A submanifold of a Riemannian manifold is called a totally umbilical submanifold if its first and second fundamental forms are proportional. In this paper we prove the following best possible result.
A submanifold of a Riemannian manifold is called a totally umbilical submanifold if the second fundamental form is proportional to the first fundamental form. In this paper, we shall prove that there is no totally umbilical submanifold of codimension less than rank M — 1 in any irreducible symmetric space M. Totally umbilical submanifolds of higher codimensions in a symmetric space are also studied. Some classification theorems of such submanifolds are obtained.