To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
By means of several counterexamples, the impossibility to obtain an analogue of the Chen lower estimation for the total mean curvature of any compact submanifold in Euclidean space for the case of compact space-like submanifolds in Lorentz–Minkowski spacetime is shown. However, a lower estimation for the total mean curvature of a four-dimensional compact space-like submanifold that factors through the light cone of six-dimensional Lorentz–Minkowski spacetime is proved by using a technique completely different from Chen's original one. Moreover, the equality characterizes the totally umbilical four-dimensional round spheres in Lorentz–Minkowski spacetime. Finally, three applications are given. Among them, an extrinsic upper bound for the first non-trivial eigenvalue of the Laplacian of the induced metric on a four-dimensional compact space-like submanifold that factors through the light cone is proved.
We give a classification of Levi-umbilical real hypersurfaces in a complex space form $\widetilde{M}_{n}(c)$, $n\geqslant 3$, whose Levi form is proportional to the induced metric by a nonzero constant. In a complex projective plane $\mathbb{C}\mathbb{P}^{2}$, we give a local construction of such hypersurfaces and moreover, we give new examples of Levi-flat real hypersurfaces in $\mathbb{C}\mathbb{P}^{2}$.
In this paper, we establish new characterization results concerning totally umbilical hypersurfaces of the hyperbolic space $\mathbb{H}^{n+1}$, under suitable constraints on the behavior of the Lorentzian Gauss map of complete hypersurfaces having some constant higher order mean curvature. Furthermore, working with different warped product models for $\mathbb{H}^{n+1}$ and supposing that certain natural inequalities involving two consecutive higher order mean curvature functions are satisfied, we study the rigidity and the nonexistence of complete hypersurfaces immersed in $\mathbb{H}^{n+1}$.
We study the Minkowski symmetry set of a closed smooth curve γ in the Minkowski plane. We answer the following question, which is analogous to one concerning curves in the Euclidean plane that was treated by Giblin and O’Shea (1990): given a point p on γ, does there exist a bi-tangent pseudo-circle that is tangent to γ both at p and at some other point q on γ? The answer is yes, but as pseudo-circles with non-zero radii have two branches (connected components) it is possible to refine the above question to the following one: given a point p on γ, does there exist a branch of a pseudo-circle that is tangent to γ both at p and at some other point q on γ? This question is motivated by the earlier quest of Reeve and Tari (2014) to define the Minkowski Blum medial axis, a counterpart of the Blum medial axis of curves in the Euclidean plane.
The mobility of a Kähler metric is the dimension of the space of metrics with which it is c-projectively equivalent. The mobility is at least two if and only if the Kähler metric admits a nontrivial hamiltonian 2-form. After summarizing this relationship, we present necessary conditions for a Kähler metric to have mobility at least three: its curvature must have nontrivial nullity at every point. Using the local classification of Kähler metrics with hamiltonian 2-forms, we describe explicitly the Kähler metrics with mobility at least three and hence show that the nullity condition on the curvature is also sufficient, up to some degenerate exceptions. In an appendix, we explain how the classification may be related, generically, to the holonomy of a complex cone metric.
In this paper we study the Lorentzian surfaces with finite type Gauss map in the four-dimensional Minkowski space. First, we obtain the complete classification of minimal surfaces with pointwise 1-type Gauss map. Then, we get a classification of Lorentzian surfaces with nonzero constant mean curvature and of finite type Gauss map. We also give some explicit examples.
In the paper we describe Kahler QCH surfaces. We prove that any Calabi type and orthotoric Kahler surfaces are QCH Kahler surfaces. We also classify locally homogeneous QCH surfaces.
We introduce polar metrics on a product manifold, which have product and warped product metrics as special cases. We prove a de Rham-type theorem characterizing Riemannian manifolds that can be locally or globally decomposed as a product manifold endowed with a polar metric. For such a product manifold, our main result gives a complete description of all its isometric immersions into a space form whose second fundamental forms are adapted to its product structure in the sense that the tangent spaces to each factor are preserved by all shape operators. This is a far-reaching generalization of a basic decomposition theorem for isometric immersions of Riemannian products due to Moore as well as of its extension by Nölker to isometric immersions of warped products.
We use the exterior and composition products of doubleforms together with the alternating operator to reformulate Pontrjagin classes and all Pontrjagin numbers in terms of the Riemannian curvature. We show that the alternating operator is obtained by a succession of applications of the first Bianchi sum and we prove some useful identities relating the previous four operations on double forms. As an application, we prove that for a $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}k$-conformally flat manifold of dimension $n\geq 4k$, the Pontrjagin classes $P_i$ vanish for any $i\geq k$. Finally, we study the equality case in an inequality of Thorpe between the Euler–Poincaré characteristic and the $k{\rm th}$ Pontrjagin number of a $4k$-dimensional Thorpe manifold.
Slant curves are introduced in three-dimensional warped products with Euclidean factors. These curves are characterised by the scalar product between the normal at the curve and the vertical vector field, and an important feature is that the case of constant Frenet curvatures implies a proper mean curvature vector field. A Lancret invariant is obtained and the Legendre curves are analysed as a particular case. An example of a slant curve is given for the exponential warping function; our example illustrates a proper (that is, not reducible to the two-dimensional) case of the Lancret theorem of three-dimensional hyperbolic geometry. We point out an eventuality relationship with the geometry of relativistic models.
We investigate existence and uniqueness of p-means ep and the median e1 of a probability measure μ on a Finsler manifold, in relation with the convexity of the support of μ. We prove that ep is the limit point of a continuous time gradient flow. Under some additional condition which is always satisfied for p≥2, a discretization of this path converges to ep. This provides an algorithm for determining the Finsler center points.
Totally umbilical, semi-parallel and parallel hypersurfaces of ℍn×ℝ are completely classified. More examples arise than in the analogous study on the ambient space 𝕊n×ℝ.
We characterize quasi-Kähler manifolds whose curvature tensor associated to the canonical Hermitian connection satisfies the first Bianchi identity. This condition is related to the third Gray identity and in the almost-Kähler case implies the integrability. Our main tool is the existence of generalized holomorphic frames previously introduced by the second author. By using such frames we also give a simpler and shorter proof of a theorem of Goldberg. Furthermore, we study almost-Hermitian structures having the curvature tensor associated to the canonical Hermitian connection equal to zero. We show some explicit examples of quasi-Kähler structures on the Iwasawa manifold having the Hermitian curvature vanishing and the Riemann curvature tensor satisfying the second Gray identity.
The characterization of a surface by means of the circles contained in it has been studied by S. Izuyima, A. Takiyama, K. Ogiu, R. Takagi and N. Takeuchi, among others. The aim of this paper is to show some characterizations of a pseudosphere in Lorentz 3-space, assuming the existence of Lorentzian and Euclidean circles.
Weitzenböck formulas are an important tool in relating local differential geometry to global topological properties by means of the so-called Bochner method. In this article we give a unified treatment of the construction of all possible Weitzenböck formulas for all irreducible, non-symmetric holonomy groups. We explicitly construct a basis of the space of Weitzenböck formulas. This classification allows us to find customized Weitzenböck formulas for applications such as eigenvalue estimates or Betti number estimates.
We study an important class of Finsler metrics, namely, Randers metrics. We classify Randers metrics of scalar flag curvature whose S-curvatures are isotropic. This class of Randers metrics contains all projectively flat Randers metrics with isotropic S-curvature and Randers metrics of constant flag curvature.
It is known that there are no real hypersurfaces with parallel structure Jacobi operators in a nonflat complex space form. In this paper, we classify real hypersurfaces in a nonflat complex space form whose structure Jacobi operator is cyclic-parallel.
Starting from two Lagrangian immersions and a horizontal curve in S3(1), it is possible to construct a new Lagrangian immersion, which we call a warped-product Lagrangian immersion. In this paper, we find two characterizations of warped-product Lagrangian immersions. We also investigate Lagrangian submanifolds which attain at every point equality in the improved version of Chen's inequality for Lagrangian submanifolds of ℂPn(4) as discovered by Opreaffi We show that, for n≥4, an n-dimensional Lagrangian submanifold in ℂPn(4) for which equality is attained at all points is necessarily minimal.