We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In a recent paper by Cantrell et al. [9], two-component KPP systems with competition of Lotka–Volterra type were analyzed and their long-time behaviour largely settled. In particular, the authors established that any constant positive steady state, if unique, is necessarily globally attractive. In the present paper, we give an explicit and biologically very natural example of oscillatory three-component system. Using elementary techniques or pre-established theorems, we show that it has a unique constant positive steady state with two-dimensional unstable manifold, a stable limit cycle, a predator–prey structure near the steady state, periodic wave trains and point-to-periodic rapid travelling waves. Numerically, we also show the existence of pulsating fronts and propagating terraces.
We prove that one-parameter families of real germs of conformal diffeomorphisms tangent to the involution x ↦−x are rigid in the parameter. We establish a connection between the dynamics in the Poincaré and Siegel domains. Although repeatedly employed in the literature, the dynamics in the Siegel domain does not explain the intrinsic real properties of these germs. Rather, these properties are fully elucidated in the Poincaré domain, where the fixed points are linearizable. However, a detailed study of the dynamics in the Siegel domain is of crucial importance. We relate both points of view on the intersection of the Siegel normalization domains.
In this paper we show that the well-known Poincaré–Lyapunov non-degenerate analytic centre problem in the plane and its higher-dimensional version, expressed as the three-dimensional centre problem at the zero-Hopf singularity, have a lot of common properties. In both cases the existence of a neighbourhood of the singularity in the phase space completely foliated by periodic orbits (including equilibria) is characterized by the fact that the system is analytically completely integrable. Hence its Poincaré–Dulac normal form is analytically orbitally linearizable. There also exists an analytic Poincaré return map and, when the system is polynomial and parametrized by its coefficients, the set of systems with centres corresponds to an affine variety in the parameter space of coefficients. Some quadratic polynomial families are considered.
Any singular level of a completely integrable system (c.i.s.) with non-degenerate singularities has a singular affine structure. We shall show how to construct a simple c.i.s. around the level, having the above affine structure. The cotangent bundle of the desingularized level is used to perform the construction, and the c.i.s. obtained looks like the simplest one associated to the affine structure. This method of construction is used to provide several examples of c.i.s. with different kinds of non-degenerate singularities.
The aim of this paper is to give a detailed analysis of Hopf bifurcation of a ratio-dependent predator–prey system involving two discrete delays. A delay parameter is chosen as the bifurcation parameter for the analysis. Stability of the bifurcating periodic solutions is determined by using the centre manifold theorem and the normal form theory introduced by Hassard et al. Some of the bifurcation properties including the direction, stability and period are given. Finally, our theoretical results are supported by some numerical simulations.
A susceptible–exposed–infectious theoretical model describing Tasmanian devil population and disease dynamics is presented and mathematically analysed using a dynamical systems approach to determine its behaviour under a range of scenarios. The steady states of the system are calculated and their stability analysed. Closed forms for the bifurcation points between these steady states are found using the rate of removal of infected individuals as a bifurcation parameter. A small-amplitude Hopf region, in which the populations oscillate in time, is shown to be present and subjected to numerical analysis. The model is then studied in detail in relation to an unfolding parameter which describes the disease latent period. The model’s behaviour is found to be biologically reasonable for Tasmanian devils and potentially applicable to other species.
This paper is concerned with the bifurcation of limit cycles from a quadratic reversible system under polynomial perturbations. It is proved that the cyclicity of the period annulus is two, and also a linear estimate of the number of zeros of the Abelian integral for the system under polynomial perturbations of arbitrary degree nis given.
We consider a stochastic SIS model for the spread of an epidemic amongst a population of n individuals that are equally spaced upon the circumference of a circle. Whilst infectious, an individual, i say, makes both local and global infectious contacts at the points of homogeneous Poisson point processes. Global contacts are made uniformly at random with members of the entire population, whilst local contacts are made according to a contact distribution centred upon the infective. Individuals at the end of their infectious period return to the susceptible state and can be reinfected. The emphasis of the paper is on asymptotic results as the population size n → ∞. Therefore, a contact process with global infection is introduced representing the limiting behaviour as n → ∞ of the circle epidemics. A branching process approximation for the early stages of the epidemic is derived and the endemic equilibrium of a major outbreak is obtained. Furthermore, assuming exponential infectious periods, the probability of a major epidemic outbreak and the proportion of the population infectious in the endemic equilibrium are shown to satisfy the same equation which characterises the epidemic process.
We analyse SIS epidemics among populations partitioned into households. The analysis considers both the stochastic and deterministic models and, unlike in previous analyses, we consider general infectious period distributions. For the deterministic model, we prove the existence of an endemic equilibrium for the epidemic if and only if the threshold parameter, R*, is greater than 1. Furthermore, by utilising Markov chains we show that the total number of infectives converges to the endemic equilibrium as t → ∞. For the stochastic model, we prove a law of large numbers result for the convergence, to the deterministic limit, of the mean number of infectives per household. This is followed by the derivation of a Gaussian limit process for the fluctuations of the stochastic model.