We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The KP-II equation was derived by Kadmotsev and Petviashvili to explain stability of line solitary waves of shallow water. Recently, Mizumachi proved nonlinear stability of 1-line solitons for exponentially localized perturbations. In this paper, we prove stability of 1-line solitons for perturbations in (1 + x2)−1/2−0H1(ℝ2) and perturbations in H1(ℝ2) ∩ ∂xL2(ℝ2).
Discrete linear Weingarten surfaces in space forms are characterized as special discrete $\unicode[STIX]{x1D6FA}$-nets, a discrete analogue of Demoulin’s $\unicode[STIX]{x1D6FA}$-surfaces. It is shown that the Lie-geometric deformation of $\unicode[STIX]{x1D6FA}$-nets descends to a Lawson transformation for discrete linear Weingarten surfaces, which coincides with the well-known Lawson correspondence in the constant mean curvature case.
In this paper, we propose a compact scheme to numerically study the coupled stochastic nonlinear Schrödinger equations. We prove that the compact scheme preserves the discrete stochastic multi-symplectic conservation law, discrete charge conservation law and discrete energy evolution law almost surely. Numerical experiments confirm well the theoretical analysis results. Furthermore, we present a detailed numerical investigation of the optical phenomena based on the compact scheme. By numerical experiments for various amplitudes of noise, we find that the noise accelerates the oscillation of the soliton and leads to the decay of the solution amplitudes with respect to time. In particular, if the noise is relatively strong, the soliton will be totally destroyed. Meanwhile, we observe that the phase shift is sensibly modified by the noise. Moreover, the numerical results present inelastic interaction which is different from the deterministic case.
We prove that a class of A-stable symplectic Runge–Kutta time semi-discretizations (including the Gauss–Legendre methods) applied to a class of semilinear Hamiltonian partial differential equations (PDEs) that are well posed on spaces of analytic functions with analytic initial data can be embedded into a modified Hamiltonian flow up to an exponentially small error. Consequently, such time semi-discretizations conserve the modified Hamiltonian up to an exponentially small error. The modified Hamiltonian is O(hp)-close to the original energy, where p is the order of the method and h is the time-step size. Examples of such systems are the semilinear wave equation, and the nonlinear Schrödinger equation with analytic nonlinearity and periodic boundary conditions. Standard Hamiltonian interpolation results do not apply here because of the occurrence of unbounded operators in the construction of the modified vector field. This loss of regularity in the construction can be taken care of by projecting the PDE to a subspace in which the operators occurring in the evolution equation are bounded, and by coupling the number of excited modes and the number of terms in the expansion of the modified vector field with the step size. This way we obtain exponential estimates of the form O(exp(–c/h1/(1+q))) with c > 0 and q ⩾ 0; for the semilinear wave equation, q = 1, and for the nonlinear Schrödinger equation, q = 2. We give an example which shows that analyticity of the initial data is necessary to obtain exponential estimates.
Integrable couplings of the Boiti-Pempinelli-Tu hierarchy are constructed by a class of non-semisimple block matrix loop algebras. Further, through using the variational identity theory, the Hamiltonian structures of those integrable couplings are obtained. The method can be applied to obtain other integrable hierarchies.
This paper explores the discrete singular convolution method for Hamiltonian PDEs. The differential matrices corresponding to two delta type kernels of the discrete singular convolution are presented analytically, which have the properties of high-order accuracy, bandlimited structure and thus can be excellent candidates for the spatial discretizations for Hamiltonian PDEs. Taking the nonlinear Schrödinger equation and the coupled Schrödinger equations for example, we construct two symplectic integrators combining this kind of differential matrices and appropriate symplectic time integrations, which both have been proved to satisfy the square conservation laws. Comprehensive numerical experiments including comparisons with the central finite difference method, the Fourier pseudospectral method, the wavelet collocation method are given to show the advantages of the new type of symplectic integrators.
We give an alternative proof of the theorem of Alikakos and Fusco concerning existence of heteroclinic solutions U : ℝ → ℝN to the system
Here a± are local minima of a potential W ∈ C2(ℝN) with W(a±) = 0. This system arises in the theory of phase transitions. Our method is variational but differs from the original artificial constraint method of Alikakos and Fusco and establishes existence by analysing the loss of compactness in minimizing sequences of the action in the appropriate functional space. Our assumptions are slightly different from those considered previously and also imply a priori estimates for the solution.
The Von Mises quasi-linear second order wave equation, which completely describes an irrotational, compressible and barotropic classical perfect fluid, can be derived from a nontrivial least action principle for the velocity scalar potential only, in contrast to existing analog formulations which are expressed in terms of coupled density and velocity fields. In this article, the classicalHamiltonian field theory specifically associated to such an equation is developed in the polytropic case and numerically verified in a simplified situation. The existence of such a mathematical structure suggests new theoretical schemes possibly useful for performing numerical integrations of fluid dynamical equations. Moreover it justifies possible new functional forms for Lagrangian densities and associated Hamiltonian functions in other theoretical classical physics contexts.
A 𝔻-semiclassical weight is one which satisfies a particular linear, first-order homogeneous equation in a divided-difference operator 𝔻. It is known that the system of polynomials, orthogonal with respect to this weight, and the associated functions satisfy a linear, first-order homogeneous matrix equation in the divided-difference operator termed the spectral equation. Attached to the spectral equation is a structure which constitutes a number of relations such as those arising from compatibility with the three-term recurrence relation. Here this structure is elucidated in the general case of quadratic lattices. The simplest examples of the 𝔻-semiclassical orthogonal polynomial systems are precisely those in the Askey table of hypergeometric and basic hypergeometric orthogonal polynomials. However within the 𝔻-semiclassical class it is entirely natural to define a generalization of the Askey table weights which involve a deformation with respect to new deformation variables. We completely construct the analogous structures arising from such deformations and their relations with the other elements of the theory. As an example we treat the first nontrivial deformation of the Askey–Wilson orthogonal polynomial system defined by the q-quadratic divided-difference operator, the Askey–Wilson operator, and derive the coupled first-order divided-difference equations characterizing its evolution in the deformation variable. We show that this system is a member of a sequence of classical solutions to the q-Painlevé system.
In this paper, we define and study strong right-invariant sub-Riemannian structures on the group of diffeomorphisms of a manifold with bounded geometry. We derive the Hamiltonian geodesic equations for such structures, and we provide examples of normal and of abnormal geodesics in that infinite-dimensional context. The momentum formulation gives a sub-Riemannian version of the Euler–Arnol’d equation. Finally, we establish some approximate and exact reachability properties for diffeomorphisms, and we give some consequences for Moser theorems.
Conservation laws provide important constraints on the solutions of partial differential equations (PDEs), therefore it is important to preserve them when discretizing such equations. In this paper, a new systematic method for discretizing a PDE, so as to preserve the local form of multiple conservation laws, is presented. The technique, which uses symbolic computation, is applied to the Korteweg–de Vries (KdV) equation to find novel explicit and implicit schemes that have finite difference analogues of its first and second conservation laws and its first and third conservation laws. The resulting schemes are numerically compared with a multisymplectic scheme.
In this paper, we consider an initial-value problem for the Korteweg–de Vries equation. The normalized Korteweg–de Vries equation considered is given by
where $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}x$ and $\tau $ represent dimensionless distance and time, respectively. In particular, we consider the case when the initial data has a discontinuous compressive step, where $u(x,0) =u_{0}>0$ for $x \le 0$ and $u(x,0)=0$ for $x>0$. The method of matched asymptotic coordinate expansions is used to obtain the detailed large-$\tau $ asymptotic structure of the solution to this problem, which exhibits the formation of a dispersive shock wave.
we prove that there exists a unique sequence $c= ({c}_{n} )_{n\in { \mathbb{Z} }_{+ } } $, real valued, such that the Hankel operators ${\Gamma }_{c} $ and ${\Gamma }_{\tilde {c} } $ of symbols $c= ({c}_{n} )_{n\geq 0} $ and $\tilde {c} = ({c}_{n+ 1} )_{n\geq 0} $, respectively, are selfadjoint compact operators on ${\ell }^{2} ({ \mathbb{Z} }_{+ } )$ and have the sequences $({\lambda }_{j} )_{j\geq 1} $ and $({\mu }_{j} )_{j\geq 1} $, respectively, as non-zero eigenvalues. Moreover, we give an
explicit formula for $c$ and we describe the kernel of ${\Gamma }_{c} $ and of ${\Gamma }_{\tilde {c} } $ in terms of the sequences $({\lambda }_{j} )_{j\geq 1} $ and $({\mu }_{j} )_{j\geq 1} $. More generally, given two arbitrary sequences $({\rho }_{j} )_{j\geq 1} $ and $({\sigma }_{j} )_{j\geq 1} $ of positive numbers satisfying
we describe the set of sequences $c= ({c}_{n} )_{n\in { \mathbb{Z} }_{+ } } $ of complex numbers such that the Hankel operators ${\Gamma }_{c} $ and ${\Gamma }_{\tilde {c} } $ are compact on ${\ell }^{2} ({ \mathbb{Z} }_{+ } )$ and have sequences $({\rho }_{j} )_{j\geq 1} $ and $({\sigma }_{j} )_{j\geq 1} $, respectively, as non-zero singular values.
In the so-called Bernoulli model of the kinetic theory of gases, where (1) the particles are dimensionless points, (2) they are contained in a cube container, (3) no attractive or exterior force is acting on them, (4) there is no collision between the particles, (5) the collisions against the walls of the container are according to the law of elastic collision, we deduce from Newtonian mechanics two basic probabilistic limit laws about particle-counting. The first one is a global central limit theorem, and the second one is a local Poisson law. The key fact is that we can prove the “realistic limit”: first the time interval is fixed and the number of particles tends to infinity (where the density particle/volume remains a fixed constant), and then, in the second step, the time tends to infinity.
We develop the theory of Abelian functions associated with algebraic curves. The growth in computer power and the advancement of efficient symbolic computation techniques have allowed for recent progress in this area. In this paper we focus on the genus three cases, comparing the two canonical classes of hyperelliptic and trigonal curves. We present new addition formulae, derive bases for the spaces of Abelian functions and discuss the differential equations such functions satisfy.
A variational principle is established to provide a new formulation for convex Hamiltonian systems. Using this formulation, we obtain some existence results for second-order Hamiltonian systems with a variety of boundary conditions, including nonlinear ones.
The time-dependent motion of water waves with a parametrically defined free surface is mapped to a fixed time-independent rectangle by an arbitrary transformation. The emphasis is on the general properties of transformations. Special cases are algebraic transformations based on transfinite interpolation, conformal mappings, and transformations generated by nonlinear elliptic partial differential equations. The aim is to study the effect of transformation on variational principles for water waves such as Luke’s Lagrangian formulation, Zakharov’s Hamiltonian formulation, and the Benjamin–Olver Hamiltonian formulation. Several novel features are exposed using this approach: a conservation law for the Jacobian, an explicit form for surface re-parameterization, inner versus outer variations and their role in the generation of hidden conservation laws of the Laplacian. Also some of the differential geometry of water waves becomes explicit. The paper is restricted to the case of planar motion, with a preliminary discussion of the extension to three-dimensional water waves.