To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper we establish a new connection between a class of two-player nonzero-sum games of optimal stopping and certain two-player nonzero-sum games of singular control. We show that whenever a Nash equilibrium in the game of stopping is attained by hitting times at two separate boundaries, then such boundaries also trigger a Nash equilibrium in the game of singular control. Moreover, a differential link between the players' value functions holds across the two games.
For spectrally negative Lévy risk processes we consider a general version of de Finetti's optimal dividend problem in which the ruin time is replaced with a general drawdown time from the running maximum in its value function. We identify a condition under which a barrier dividend strategy is optimal among all admissible strategies if the underlying process does not belong to a small class of compound Poisson processes with drift, for which the take-the-money-and-run dividend strategy is optimal. It generalizes the previous results on dividend optimization from ruin time based to drawdown time based. The associated drawdown functions are discussed in detail for examples of spectrally negative Lévy processes.
In this paper we relate the set of structure-preserving equivalent martingale measures ℳsp for financial models driven by semimartingales with conditionally independent increments to a set of measurable and integrable functions 𝒴. More precisely, we prove that ℳsp ≠ ∅ if and only if 𝒴 ≠ ∅, and connect the sets ℳsp and 𝒴 to the semimartingale characteristics of the driving process. As examples we consider integrated Lévy models with independent stochastic factors and time-changed Lévy models and derive mild conditions for ℳsp ≠ ∅.
Macroscale “continuum” level predictions are made by a new way to construct computationally efficient “wrappers” around fine-scale, microscopic, detailed descriptions of dynamical systems, such as molecular dynamics. It is often significantly easier to code a microscale simulator with periodicity: so the challenge addressed here is to develop a scheme that uses only a given periodic microscale simulator; specifically, one for atomistic dynamics. Numerical simulations show that applying a suitable proportional controller within “action regions” of a patch of atomistic simulation effectively predicts the macroscale transport of heat. Theoretical analysis establishes that such an approach will generally be effective and efficient, and also determines good values for the strength of the proportional controller. This work has the potential to empower systematic analysis and understanding at a macroscopic system level when only a given microscale simulator is available.
We consider a refracted jump diffusion process having two-sided jumps with rational Laplace transforms. For such a process, by applying a straightforward but interesting approach, we derive formulae for the Laplace transform of its distribution. Our formulae are presented in an attractive form and the approach is novel. In particular, the idea in the application of an approximating procedure is remarkable. In addition, the results are used to price variable annuities with state-dependent fees.
In this paper we investigate the Parisian ruin problem of the general dual Lévy risk model. Unlike the usual concept of ultimate ruin, allowing the surplus level to be negative within a prespecified period indicates that the deficit at Parisian ruin is not necessarily equal to zero. Hence, we consider a Gerber–Shiu type expected discounted penalty function at the Parisian ruin and obtain an explicit expression for this function under the dual Lévy risk model. As particular cases, we calculate the Parisian ruin probability and the expected discounted kth moments of the deficit at the Parisian ruin for the compound Poisson dual risk model and a drift-diffusion model. Numerical examples are given to illustrate the behavior of Parisian ruin and the expected discounted deficit at Parisian ruin.
Two different ways of trimming the sample path of a stochastic process in 𝔻[0, 1]: global ('trim as you go') trimming and record time ('lookback') trimming are analysed to find conditions for the corresponding operators to be continuous with respect to the (strong) J1-topology. A key condition is that there should be no ties among the largest ordered jumps of the limit process. As an application of the theory, via the continuous mapping theorem, we prove limit theorems for trimmed Lévy processes, using the functional convergence of the underlying process to a stable process. The results are applied to a reinsurance ruin time problem.
Current literature on stochastic dominance assumes utility/loss functions to be the same across random variables. However, decision models with inconsistent utility functions have been proposed in the literature. The use of inconsistent loss functions when comparing between two random variables can also be appropriate under other problem settings. In this paper we generalize almost stochastic dominance to problems with inconsistent utility/loss functions. In particular, we propose a set of conditions that is necessary and sufficient for clear preferences when the utility/loss functions are allowed to vary across different random variables.
In this paper we study general aggregation of stochastic arrangement increasing random variables, including both the generalized linear combination and the standard aggregation as special cases. In terms of monotonicity, supermodularity, and convexity of the kernel function, we develop several sufficient conditions for the increasing convex order on the generalized aggregations. Some applications in reliability and risks are also presented.
Pricing variance swaps have become a popular subject recently, and most research of this type come under Heston’s two-factor model. This paper is an extension of some recent research which used the dimension-reduction technique based on the Heston model. A new closed-form pricing formula focusing on a log-return variance swap is presented here, under the assumption that the underlying asset prices can be described by a mean-reverting Gaussian volatility model (Ornstein–Uhlenbeck process). Numerical tests in two respects using the Monte Carlo (MC) simulation are included. Moreover, we discuss a procedure of solving a quadratic differential equation with one variable. Our method can avoid the previously encountered limitations, but requires more time for calculation than other recent analytical discrete models.
We consider a two-dimensional optimal dividend problem in the context of two insurance companies with compound Poisson surplus processes, who collaborate by paying each other's deficit when possible. We study the stochastic control problem of maximizing the weighted sum of expected discounted dividend payments (among all admissible dividend strategies) until ruin of both companies, by extending results of univariate optimal control theory. In the case that the dividends paid by the two companies are equally weighted, the value function of this problem compares favorably with the one of merging the two companies completely. We identify the optimal value function as the smallest viscosity supersolution of the respective Hamilton–Jacobi–Bellman equation and provide an iterative approach to approximate it numerically. Curve strategies are identified as the natural analogue of barrier strategies in this two-dimensional context. A numerical example is given for which such a curve strategy is indeed optimal among all admissible dividend strategies, and for which this collaboration mechanism also outperforms the suitably weighted optimal dividend strategies of the two stand-alone companies.
We consider a Cramér–Lundberg insurance risk process with the added feature of reinsurance. If an arriving claim finds the reserve below a certain threshold γ, or if it would bring the reserve below that level, then a reinsurer pays part of the claim. Using fluctuation theory and the theory of scale functions of spectrally negative Lévy processes, we derive expressions for the Laplace transform of the time to ruin and of the joint distribution of the deficit at ruin and the surplus before ruin. We specify these results in much more detail for the threshold set-up in the case of proportional reinsurance.
This paper pioneers a Freidlin–Wentzell approach to stochastic impulse control of exchange rates when the central bank desires to maintain a target zone. Pressure to stimulate the economy forces the bank to implement diffusion monetary policy involving Freidlin–Wentzell perturbations indexed by a parameter ε∈ [0,1]. If ε=0, the policy keeps exchange rates in the target zone for all times t≥0. When ε>0, exchange rates continually exit the target zone almost surely, triggering central bank interventions which force currencies back into the zone or abandonment of all targets. Interventions and target zone deviations are costly, motivating the bank to minimize these joint costs for any ε∈ [0,1]. We prove convergence of the value functions as ε→0 achieving a value function approximation for small ε. Via sample path analysis and cost function bounds, intervention followed by target zone abandonment emerges as the optimal policy.
In this paper we aim to apply simple actuarial methods to build an insurance plan protecting against an epidemic risk in a population. The studied model is an extended SIR epidemic in which the removal and infection rates may depend on the number of registered removals. The costs due to the epidemic are measured through the expected epidemic size and infectivity time. The premiums received during the epidemic outbreak are measured through the expected susceptibility time. Using martingale arguments, a method by recursion is developed to calculate the cost components and the corresponding premium levels in this extended epidemic model. Some numerical examples illustrate the effect of removals and the premium calculation in an insurance plan.
We present a family of continuous piecewise linear maps of the unit interval into itself that are all chaotic in the sense of Li and Yorke [‘Period three implies chaos’, Amer. Math. Monthly82 (1975), 985–992] and for which almost every point (in the sense of Lebesgue) in the unit interval is an eventually periodic point of period $p,p\geq 3$, for a member of the family.
We study an M/G/1-type queueing model with the following additional feature. The server works continuously, at fixed speed, even if there are no service requirements. In the latter case, it is building up inventory, which can be interpreted as negative workload. At random times, with an intensity ω(x) when the inventory is at level x>0, the present inventory is removed, instantaneously reducing the inventory to 0. We study the steady-state distribution of the (positive and negative) workload levels for the cases ω(x) is constant and ω(x) = ax. The key tool is the Wiener–Hopf factorization technique. When ω(x) is constant, no specific assumptions will be made on the service requirement distribution. However, in the linear case, we need some algebraic hypotheses concerning the Laplace–Stieltjes transform of the service requirement distribution. Throughout the paper, we also study a closely related model arising from insurance risk theory.
In the spirit of the axiomatic approach by Rogers (1998) we show the equivalence between a set of assumptions on the behaviour of prices and the existence of a representation of these prices as conditional expectations. We rely on only weak assumptions and avoid any a priori modelling of negligible events or of any market filtration. Rather, both endogenously emerge along with the representation as conditional expectations.
We study solvency of insurers in a comprehensive model where various economic factors affect the capital developments of the companies. The main interest is in the impact of real growth to ruin probabilities. The volume of the business is allowed to increase or decrease. In the latter case, the study is focused on run-off companies. Our main results give sharp asymptotic estimates for infinite-time ruin probabilities.
We consider the optimal proportional reinsurance problem for an insurer with two dependent classes of insurance business, where the two claim number processes are correlated through a common shock component. Using the technique of stochastic linear–quadratic control theory and the Hamilton–Jacobi–Bellman equation, we derive the explicit expressions for the optimal reinsurance strategies and value function, and present the verification theorem within the framework of the viscosity solution. Furthermore, we extend the results in the linear–quadratic setting to the mean–variance problem, and obtain an efficient strategy and frontier. Some numerical examples are given to show the impact of model parameters on the efficient frontier.