To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We perform an analysis of the potential time inhomogeneity in the dependence between multiple financial time series. To this end, we use the framework of copula theory and tackle the question of whether dependencies in such a case can be assumed constant throughout time or rather have to be modeled in a time-inhomogeneous way. We focus on parametric copula models and suitable inference techniques in the context of a special copula-based multivariate time series model. A recent result due to Chan et al. (2009) is used to derive the joint limiting distribution of local maximum-likelihood estimators on overlapping samples. By restricting the overlap to be fixed, we establish the limiting law of the maximum of the estimator series. Based on the limiting distributions, we develop statistical homogeneity tests, and investigate their local power properties. A Monte Carlo simulation study demonstrates that bootstrapped variance estimates are needed in finite samples. Empirical analyses on real-world financial data finally confirm that time-varying parameters are an exception rather than the rule.
We derive asymptotic theory for the extremogram and cross-extremogram of a bivariate GARCH(1,1) process. We show that the tails of the components of a bivariate GARCH(1,1) process may exhibit power-law behavior but, depending on the choice of the parameters, the tail indices of the components may differ. We apply the theory to five-minute return data of stock prices and foreign-exchange rates. We judge the fit of a bivariate GARCH(1,1) model by considering the sample extremogram and cross-extremogram of the residuals. The results are in agreement with the independent and identically distributed hypothesis of the two-dimensional innovations sequence. The cross-extremograms at lag zero have a value significantly distinct from zero. This fact points at some strong extremal dependence of the components of the innovations.
We derive a new equation for the optimal investment boundary of a general irreversible investment problem under exponential Lévy uncertainty. The problem is set as an infinite time-horizon, two-dimensional degenerate singular stochastic control problem. In line with the results recently obtained in a diffusive setting, we show that the optimal boundary is intimately linked to the unique optional solution of an appropriate Bank–El Karoui representation problem. Such a relation and the Wiener–Hopf factorization allow us to derive an integral equation for the optimal investment boundary. In case the underlying Lévy process hits any point in R with positive probability we show that the integral equation for the investment boundary is uniquely satisfied by the unique solution of another equation which is easier to handle. As a remarkable by-product we prove the continuity of the optimal investment boundary. The paper is concluded with explicit results for profit functions of Cobb–Douglas type and CES type. In the former case the function is separable and in the latter case nonseparable.
We study the optimal proportional reinsurance and investment problem in a general jump-diffusion financial market. Assuming that the insurer’s surplus process follows a jump-diffusion process, the insurer can purchase proportional reinsurance from the reinsurer and invest in a risk-free asset and a risky asset, whose price is modelled by a general jump-diffusion process. The insurance company wishes to maximize the expected exponential utility of the terminal wealth. By using techniques of stochastic control theory, closed-form expressions for the value function and optimal strategy are obtained. A Monte Carlo simulation is conducted to illustrate that the closed-form expressions we derived are indeed the optimal strategies, and some numerical examples are presented to analyse the impact of model parameters on the optimal strategies.
Fractional Lévy processes generalize fractional Brownian motion in a natural way. We go a step further and extend the usual fractional Riemann-Liouville kernel to a regularly varying function. We call the resulting stochastic processes generalized fractional Lévy processes (GFLPs) and show that they may have short or long memory increments and that their sample paths may have jumps or not. Moreover, we define stochastic integrals with respect to a GFLP and investigate their second-order structure and sample path properties. A specific example is the Ornstein-Uhlenbeck process driven by a time-scaled GFLP. We prove a functional central limit theorem for such scaled processes with a fractional Ornstein-Uhlenbeck process as a limit process. This approximation applies to a wide class of stochastic volatility models, which include models where possibly neither the data nor the latent volatility process are semimartingales.
Predictability of revenue and costs to both operators and users is critical for payment schemes. We study the issue of the design of payment schemes in networks with bandwidth sharing. The model we consider is a processor sharing system that is accessed by various classes of users with different processing requirements or file sizes. The users are charged according to a Vickrey–Clarke–Groves mechanism because of its efficiency and fairness when logarithmic utility functions are involved. Subject to a given mean revenue for the operator, we study whether it is preferable for a user to pay upon arrival, depending on the congestion level, or whether the user should opt to pay at the end. This leads to a study of the volatility of payment schemes and we show that opting for prepayment is preferable from a user point of view. The analysis yields new results on the asymptotic behavior of conditional response times for processor sharing systems and connections to associated orthogonal polynomials.
For any strictly positive martingale S = eX for which X has a characteristic function, we provide an expansion for the implied volatility. This expansion is explicit in the sense that it involves no integrals, but only polynomials in the log-strike. We illustrate the versatility of our expansion by computing the approximate implied volatility smile in three well-known martingale models: one finite activity exponential Lévy model, Merton (1976), one infinite activity exponential Lévy model (variance gamma), and one stochastic volatility model, Heston (1993). Finally, we illustrate how our expansion can be used to perform a model-free calibration of the empirically observed implied volatility surface.
Consider a spectrally negative risk process where, on ruin, the deficit is immediately paid, and the process restarts from 0. When the process reaches a threshold b, all the surplus above b is paid as dividend. Applying the theory of exit times for a spectrally negative Lévy process and its reflection at the maximum and at the minimum, we obtain recursive formulae for the following moments. (i) The moments of the discounted loss until the process reaches b. This is equivalent to the moments of the discounted dividends in the dual model under the barrier strategy. (ii) The moments of the discounted loss for models with and without a dividend barrier for the infinite horizon. (iii) The moments of the discounted dividends for the infinite horizon.
In this paper we study the optimal dividend payments for a company of limited liability whose cash reserves in the absence of dividends follow a Markov-modulated jump-diffusion process with positive drifts and negative exponential jumps, where parameters and discount rates are modulated by a finite-state irreducible Markov chain. The main aim is to maximize the expected cumulative discounted dividend payments until bankruptcy time when cash reserves are nonpositive for the first time. We extend the results of Jiang and Pistorius [15] to our setup by proving that it is optimal to adopt a modulated barrier strategy at certain positive regime-dependent levels and that the value function can be explicitly characterized as the fixed point of a contraction.
In this paper we propose a strategy that gives an optimal lower bound of the average gain for the two-envelope problem within the McDonnell and Abbott (2009) and McDonnell et al. (2011) framework. We obtain this result with partial information about the probability distribution of the envelope's contents.
In this paper we develop two permutation theorems on argument increasing functions of a multivariate random vector and a real parameter vector. We use the unified approach of our two theorems to provide some important theoretical results on the capital allocation in actuarial science, the deductible and upper limit allocations in insurance policy, and portfolio allocation in financial engineering. Our results successfully improve or extend the corresponding works in the literature.
Drawdowns measuring the decline in value from the historical running maxima over a given period of time are considered as extremal events from the standpoint of risk management. To date, research on the topic has mainly focused on the side of severity by studying the first drawdown over a certain prespecified size. In this paper we extend the discussion by investigating the frequency of drawdowns and some of their inherent characteristics. We consider two types of drawdown time sequences depending on whether a historical running maximum is reset or not. For each type we study the frequency rate of drawdowns, the Laplace transform of the nth drawdown time, the distribution of the running maximum, and the value process at the nth drawdown time, as well as some other quantities of interest. Interesting relationships between these two drawdown time sequences are also established. Finally, insurance policies protecting against the risk of frequent drawdowns are also proposed and priced.
Dybvig (1988) introduced the interesting problem of how to construct in the cheapest possible way a terminal wealth with desired distribution. This idea has induced a series of papers concerning generality, consequences, and applications. As the optimized claims typically follow the trend in the market, they are not useful for investors who wish to use them to protect an existing portfolio. For this reason, Bernard, Moraux, Rüschendorf and Vanduffel (2014b) imposed additional state-dependent constraints as a way of controlling the payoff structure. The present paper extends this work in various ways. In order to obtain optimal claims in general models we allow in this paper for extended contracts. We deal with general multivariate price processes and dispense with several of the regularity assumptions in the previous work (in particular, we omit any continuity assumption). State dependence is modeled by requiring terminal wealth to have a fixed copula with a benchmark wealth. In this setting, we are able to characterize optimal claims. We apply the theoretical results to deal with several hedging and expected utility maximization problems of interest.
In this paper we introduce an insurance ruin model with an adaptive premium rate, henceforth referred to as restructuring/refraction, in which classical ruin and bankruptcy are distinguished. In this model the premium rate is increased as soon as the wealth process falls into the red zone and is brought back to its regular level when the wealth process recovers. The analysis is focused mainly on the time a refracted Lévy risk process spends in the red zone (analogous to the duration of the negative surplus). Building on results from [11] and [16], we identify the distribution of various functionals related to occupation times of refracted spectrally negative Lévy processes. For example, these results are used to compute both the probability of bankruptcy and the probability of Parisian ruin in this model with restructuring.
Consider Wald's sequential probability ratio test for deciding whether a sequence of independent and identically distributed observations comes from a specified phase-type distribution or from an exponentially tilted alternative distribution. Exact decision boundaries for given type-I and type-II errors are derived by establishing a link with ruin theory. Information on the mean sample size of the test can be retrieved as well. The approach relies on the use of matrix-valued scale functions associated with a certain one-sided Markov additive process. By suitable transformations, the results also apply to other types of distributions, including some distributions with regularly varying tails.
We investigate two mean–variance optimization problems for a single cohort of workers in an accumulation phase of a defined benefit pension scheme. Since the mortality intensity evolves as a general Markov diffusion process, the liability is random. The fund manager aims to cover this uncertain liability via controlling the asset allocation strategy and the contribution rate. In order to have a more realistic model, we study the case when the risk aversion depends dynamically on current wealth. By solving an extended Hamilton–Jacobi–Bellman system, we obtain analytical solutions for the equilibrium strategies and value function which depend on both current wealth and mortality intensity. Moreover, results for the constant risk aversion are presented as special cases of our models.
In this paper we consider some nonstandard renewal risk models with some dependent claim sizes and stochastic return, where an insurance company is allowed to invest her/his wealth in financial assets, and the price process of the investment portfolio is described as a geometric Lévy process. When the claim size distribution belongs to some classes of heavy-tailed distributions and a constraint is imposed on the Lévy process in terms of its Laplace exponent, we obtain some asymptotic formulae for the tail probability of discounted aggregate claims and ruin probabilities holding uniformly for some finite or infinite time horizons.
We consider a multivariate continuous-time ARMA (MCARMA) process sampled at a high-frequency time grid {hn, 2hn,…, nhn}, where hn ↓ 0 and nhn → ∞ as n → ∞, or at a constant time grid where hn = h. For this model, we present the asymptotic behavior of the properly normalized partial sum to a multivariate stable or a multivariate normal random vector depending on the domain of attraction of the driving Lévy process. Furthermore, we derive the asymptotic behavior of the sample variance. In the case of finite second moments of the driving Lévy process the sample variance is a consistent estimator. Moreover, we embed the MCARMA process in a cointegrated model. For this model, we propose a parameter estimator and derive its asymptotic behavior. The results are given for more general processes than MCARMA processes and contain some asymptotic properties of stochastic integrals.
We derive the explicit formula for the joint Laplace transform of the Wishart process and its time integral, which extends the original approach of Bru (1991). We compare our methodology with the alternative results given by the variation-of-constants method, the linearization of the matrix Riccati ordinary differential equation, and the Runge-Kutta algorithm. The new formula turns out to be fast and accurate.
We study a renewal risk model in which the surplus process of the insurance company is modelled by a compound fractional Poisson process. We establish the long-range dependence property of this nonstationary process. Some results for ruin probabilities are presented under various assumptions on the distribution of the claim sizes.