We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $g\geqslant 2$. A real number is said to be $g$-normal if its base $g$ expansion contains every finite sequence of digits with the expected limiting frequency. Let $\unicode[STIX]{x1D711}$ denote Euler’s totient function, let $\unicode[STIX]{x1D70E}$ be the sum-of-divisors function, and let $\unicode[STIX]{x1D706}$ be Carmichael’s lambda-function. We show that if $f$ is any function formed by composing $\unicode[STIX]{x1D711}$, $\unicode[STIX]{x1D70E}$, or $\unicode[STIX]{x1D706}$, then the number
obtained by concatenating the base $g$ digits of successive $f$-values is $g$-normal. We also prove the same result if the inputs $1,2,3,\ldots$ are replaced with the primes $2,3,5,\ldots$. The proof is an adaptation of a method introduced by Copeland and Erdős in 1946 to prove the 10-normality of $0.235711131719\cdots \,$.