We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
for $n\ges 0$. In this paper, we obtain the relation between the Jacobi continued fraction of the ordinary generating function of yn(q) and that of xn(q). We also prove that the transformation preserves q-TPr+1 (q-TP) property of the Hankel matrix $[x_{i+j}(q)]_{i,j \ges 0}$, in particular for r = 2,3, implying the r-q-log-convexity of the sequence $\{y_n(q)\}_{n\ges 0}$. As applications, we can give the continued fraction expressions of Eulerian polynomials of types A and B, derangement polynomials types A and B, general Eulerian polynomials, Dowling polynomials and Tanny-geometric polynomials. In addition, we also prove the strong q-log-convexity of derangement polynomials type B, Dowling polynomials and Tanny-geometric polynomials and 3-q-log-convexity of general Eulerian polynomials, Dowling polynomials and Tanny-geometric polynomials. We also present a new proof of the result of Pólya and Szegö about the binomial convolution preserving the Stieltjes moment property and a new proof of the result of Zhu and Sun on the binomial transformation preserving strong q-log-convexity.
One of the open questions in the study of Carmichael numbers is whether, for a given $R\geq 3$, there exist infinitely many Carmichael numbers with exactly $R$ prime factors. Chernick [‘On Fermat’s simple theorem’, Bull. Amer. Math. Soc.45 (1935), 269–274] proved that Dickson’s $k$-tuple conjecture would imply a positive result for all such $R$. Wright [‘Factors of Carmichael numbers and a weak $k$-tuples conjecture’, J. Aust. Math. Soc.100(3) (2016), 421–429] showed that a weakened version of Dickson’s conjecture would imply that there are an infinitude of $R$ for which there are infinitely many such Carmichael numbers. In this paper, we improve on our 2016 result by weakening the required conjecture even further.
Let $n,r,k\in \mathbb{N}$. An $r$-colouring of the vertices of a regular $n$-gon is any mapping $\unicode[STIX]{x1D712}:\mathbb{Z}_{n}\rightarrow \{1,2,\ldots ,r\}$. Two colourings are equivalent if one of them can be obtained from another by a rotation of the polygon. An $r$-ary necklace of length $n$ is an equivalence class of $r$-colourings of $\mathbb{Z}_{n}$. We say that a colouring is $k$-alternating if all $k$ consecutive vertices have pairwise distinct colours. We compute the smallest number $r$ for which there exists a $k$-alternating $r$-colouring of $\mathbb{Z}_{n}$ and we count, for any $r$, 2-alternating $r$-colourings of $\mathbb{Z}_{n}$ and 2-alternating $r$-ary necklaces of length $n$.
where $[x]$ denotes the integral part of real $x$. The above summations were recently considered by Bordellès et al. [‘On a sum involving the Euler function’, Preprint, 2018, arXiv:1808.00188] and Wu [‘On a sum involving the Euler totient function’, Preprint, 2018, hal-01884018].
In this paper we study digit frequencies in the setting of expansions in non-integer bases, and self-affine sets with non-empty interior. Within expansions in non-integer bases we show that if $\unicode[STIX]{x1D6FD}\in (1,1.787\ldots )$ then every $x\in (0,1/(\unicode[STIX]{x1D6FD}-1))$ has a simply normal $\unicode[STIX]{x1D6FD}$-expansion. We also prove that if $\unicode[STIX]{x1D6FD}\in (1,(1+\sqrt{5})/2)$ then every $x\in (0,1/(\unicode[STIX]{x1D6FD}-1))$ has a $\unicode[STIX]{x1D6FD}$-expansion for which the digit frequency does not exist, and a $\unicode[STIX]{x1D6FD}$-expansion with limiting frequency of zeros $p$, where $p$ is any real number sufficiently close to $1/2$. For a class of planar self-affine sets we show that if the horizontal contraction lies in a certain parameter space and the vertical contractions are sufficiently close to $1$, then every non-trivial vertical fibre contains an interval. Our approach lends itself to explicit calculation and gives rise to new examples of self-affine sets with non-empty interior. One particular strength of our approach is that it allows for different rates of contraction in the vertical direction.
In 1984, K. Mahler asked how well elements in the Cantor middle third set can be approximated by rational numbers from that set and by rational numbers outside of that set. We consider more general missing digit sets $C$ and construct numbers in $C$ that are arbitrarily well approximable by rationals in $C$, but badly approximable by rationals outside of $C$. More precisely, we construct them so that all but finitely many of their convergents lie in $C$.
Let $n$ be a positive integer. We obtain new Menon’s identities by using the actions of some subgroups of $(\mathbb{Z}/n\mathbb{Z})^{\times }$ on the set $\mathbb{Z}/n\mathbb{Z}$. In particular, let $p$ be an odd prime and let $\unicode[STIX]{x1D6FC}$ be a positive integer. If $H_{k}$ is a subgroup of $(\mathbb{Z}/p^{\unicode[STIX]{x1D6FC}}\mathbb{Z})^{\times }$ with index $k=p^{\unicode[STIX]{x1D6FD}}u$ such that $0\leqslant \unicode[STIX]{x1D6FD}<\unicode[STIX]{x1D6FC}$ and $u\mid p-1$, then
Let $q\geq 1$ be any integer and let $\unicode[STIX]{x1D716}\in [\frac{1}{11},\frac{1}{2})$ be a given real number. We prove that for all primes $p$ satisfying
Let $k$ be an arbitrary positive integer and let $\unicode[STIX]{x1D6FE}(n)$ stand for the product of the distinct prime factors of $n$. For each integer $n\geqslant 2$, let $a_{n}$ and $b_{n}$ stand respectively for the maximum and the minimum of the $k$ integers $\unicode[STIX]{x1D6FE}(n+1),\unicode[STIX]{x1D6FE}(n+2),\ldots ,\unicode[STIX]{x1D6FE}(n+k)$. We show that $\liminf _{n\rightarrow \infty }a_{n}/b_{n}=1$. We also prove that the same result holds in the case of the Euler function and the sum of the divisors function, as well as the functions $\unicode[STIX]{x1D714}(n)$ and $\unicode[STIX]{x1D6FA}(n)$, which stand respectively for the number of distinct prime factors of $n$ and the total number of prime factors of $n$ counting their multiplicity.
Let $F$ be an integral linear recurrence, $G$ an integer-valued polynomial splitting over the rationals and $h$ a positive integer. Also, let ${\mathcal{A}}_{F,G,h}$ be the set of all natural numbers $n$ such that $\gcd (F(n),G(n))=h$. We prove that ${\mathcal{A}}_{F,G,h}$ has a natural density. Moreover, assuming that $F$ is nondegenerate and $G$ has no fixed divisors, we show that the density of ${\mathcal{A}}_{F,G,1}$ is 0 if and only if ${\mathcal{A}}_{F,G,1}$ is finite.
We construct a random model to study the distribution of class numbers in special families of real quadratic fields ${\open Q}(\sqrt d )$ arising from continued fractions. These families are obtained by considering continued fraction expansions of the form $\sqrt {D(n)} = [f(n),\overline {u_1,u_2, \ldots ,u_{s-1} ,2f(n)]} $ with fixed coefficients u1, …, us−1 and generalize well-known families such as Chowla's 4n2 + 1, for which analogous results were recently proved by Dahl and Lamzouri [‘The distribution of class numbers in a special family of real quadratic fields’, Trans. Amer. Math. Soc. (2018), 6331–6356].
Lapkova [‘On the average number of divisors of reducible quadratic polynomials’, J. Number Theory180 (2017), 710–729] uses a Tauberian theorem to derive an asymptotic formula for the divisor sum $\sum _{n\leq x}d(n(n+v))$ where $v$ is a fixed integer and $d(n)$ denotes the number of divisors of $n$. We reprove this result with additional terms in the asymptotic formula, by investigating the relationship between this divisor sum and the well-known sum $\sum _{n\leq x}d(n)d(n+v)$.
Let $h(n)$ denote the largest product of distinct primes whose sum does not exceed $n$. The main result of this paper is that the property for all $n\geq 1$, we have $\log h(n)<\sqrt{\text{li}^{-1}(n)}$ (where $\text{li}^{-1}$ denotes the inverse function of the logarithmic integral) is equivalent to the Riemann hypothesis.
We establish some supercongruences for the truncated $_{2}F_{1}$ and $_{3}F_{2}$ hypergeometric series involving the $p$-adic gamma functions. Some of these results extend the four Rodriguez-Villegas supercongruences on the truncated $_{3}F_{2}$ hypergeometric series. Related supercongruences modulo $p^{3}$ are proposed as conjectures.
We provide two new bounds on the number of visible points on exponential curves modulo a prime for all choices of primes. We also provide one new bound on the number of visible points on exponential curves modulo a prime for almost all primes.
In 1973, Williams [D. Williams, On Rényi's ‘record’ problem and Engel's series, Bull. London Math. Soc.5 (1973), 235–237] introduced two interesting discrete Markov processes, namely C-processes and A-processes, which are related to record times in statistics and Engel's series in number theory respectively. Moreover, he showed that these two processes share the same classical limit theorems, such as the law of large numbers, central limit theorem and law of the iterated logarithm. In this paper, we consider the large deviations for these two Markov processes, which indicate that there is a difference between C-processes and A-processes in the context of large deviations.
We establish a combinatorial realization of continued fractions as quotients of cardinalities of sets. These sets are sets of perfect matchings of certain graphs, the snake graphs, that appear naturally in the theory of cluster algebras. To a continued fraction $[a_{1},a_{2},\ldots ,a_{n}]$ we associate a snake graph ${\mathcal{G}}[a_{1},a_{2},\ldots ,a_{n}]$ such that the continued fraction is the quotient of the number of perfect matchings of ${\mathcal{G}}[a_{1},a_{2},\ldots ,a_{n}]$ and ${\mathcal{G}}[a_{2},\ldots ,a_{n}]$. We also show that snake graphs are in bijection with continued fractions. We then apply this connection between cluster algebras and continued fractions in two directions. First we use results from snake graph calculus to obtain new identities for the continuants of continued fractions. Then we apply the machinery of continued fractions to cluster algebras and obtain explicit direct formulas for quotients of elements of the cluster algebra as continued fractions of Laurent polynomials in the initial variables. Building on this formula, and using classical methods for infinite periodic continued fractions, we also study the asymptotic behavior of quotients of elements of the cluster algebra.
Let $n\geq 1$ be an integer and $f$ be an arithmetical function. Let $S=\{x_{1},\ldots ,x_{n}\}$ be a set of $n$ distinct positive integers with the property that $d\in S$ if $x\in S$ and $d|x$. Then $\min (S)=1$. Let $(f(S))=(f(\gcd (x_{i},x_{j})))$ and $(f[S])=(f(\text{lcm}(x_{i},x_{j})))$ denote the $n\times n$ matrices whose $(i,j)$-entries are $f$ evaluated at the greatest common divisor of $x_{i}$ and $x_{j}$ and the least common multiple of $x_{i}$ and $x_{j}$, respectively. In 1875, Smith [‘On the value of a certain arithmetical determinant’, Proc. Lond. Math. Soc.7 (1875–76), 208–212] showed that $\det (f(S))=\prod _{l=1}^{n}(f\ast \unicode[STIX]{x1D707})(x_{l})$, where $f\ast \unicode[STIX]{x1D707}$ is the Dirichlet convolution of $f$ and the Möbius function $\unicode[STIX]{x1D707}$. Bourque and Ligh [‘Matrices associated with classes of multiplicative functions’, Linear Algebra Appl.216 (1995), 267–275] computed the determinant $\det (f[S])$ if $f$ is multiplicative and, Hong, Hu and Lin [‘On a certain arithmetical determinant’, Acta Math. Hungar.150 (2016), 372–382] gave formulae for the determinants $\det (f(S\setminus \{1\}))$ and $\det (f[S\setminus \{1\}])$. In this paper, we evaluate the determinant $\det (f(S\setminus \{x_{t}\}))$ for any integer $t$ with $1\leq t\leq n$ and also the determinant $\det (f[S\setminus \{x_{t}\}])$ if $f$ is multiplicative.