We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
For positive integers n and d > 0, let $G(\mathbb {Q}^n,\; d)$ denote the graph whose vertices are the set of rational points $\mathbb {Q}^n$, with $u,v \in \mathbb {Q}^n$ being adjacent if and only if the Euclidean distance between u and v is equal to d. Such a graph is deemed “non-trivial” if d is actually realized as a distance between points of $\mathbb {Q}^n$. In this paper, we show that a space $\mathbb {Q}^n$ has the property that all pairs of non-trivial distance graphs $G(\mathbb {Q}^n,\; d_1)$ and $G(\mathbb {Q}^n,\; d_2)$ are isomorphic if and only if n is equal to 1, 2, or a multiple of 4. Along the way, we make a number of observations concerning the clique number of $G(\mathbb {Q}^n,\; d)$.
By making use of the ‘creative microscoping’ method, Guo and Zudilin [‘Dwork-type supercongruences through a creative $q$-microscope’, Preprint, 2020, arXiv:2001.02311] proved several Dwork-type supercongruences, including some conjectures of Swisher. In this paper, we apply the Guo–Zudilin method to prove a new Dwork-type supercongruence, which uniformly generalises several conjectures of Swisher.
Fix an alphabet $A=\{0,1,\ldots ,M\}$ with $M\in \mathbb{N}$. The univoque set $\mathscr{U}$ of bases $q\in (1,M+1)$ in which the number $1$ has a unique expansion over the alphabet $A$ has been well studied. It has Lebesgue measure zero but Hausdorff dimension one. This paper describes how the points in the set $\mathscr{U}$ are distributed over the interval $(1,M+1)$ by determining the limit
for all $q\in (1,M+1)$. We show in particular that $f(q)>0$ if and only if $q\in \overline{\mathscr{U}}\backslash \mathscr{C}$, where $\mathscr{C}$ is an uncountable set of Hausdorff dimension zero, and $f$ is continuous at those (and only those) points where it vanishes. Furthermore, we introduce a countable family of pairwise disjoint subsets of $\mathscr{U}$ called relative bifurcation sets, and use them to give an explicit expression for the Hausdorff dimension of the intersection of $\mathscr{U}$ with any interval, answering a question of Kalle et al [On the bifurcation set of unique expansions. Acta Arith. 188 (2019), 367–399]. Finally, the methods developed in this paper are used to give a complete answer to a question of the first author [On univoque and strongly univoque sets. Adv. Math.308 (2017), 575–598] on strongly univoque sets.
Erdös and Zaremba showed that
$ \limsup_{n\to \infty} \frac{\Phi(n)}{(\log\log n)^2}=e^\gamma$
, γ being Euler’s constant, where
$\Phi(n)=\sum_{d|n} \frac{\log d}{d}$
.
We extend this result to the function
$\Psi(n)= \sum_{d|n} \frac{(\log d )(\log\log d)}{d}$
and some other functions. We show that
$ \limsup_{n\to \infty}\, \frac{\Psi(n)}{(\log\log n)^2(\log\log\log n)}\,=\, e^\gamma$
. The proof requires a new approach. As an application, we prove that for any
$\eta>1$
, any finite sequence of reals
$\{c_k, k\in K\}$
,
$\sum_{k,\ell\in K} c_kc_\ell \, \frac{\gcd(k,\ell)^{2}}{k\ell} \le C(\eta) \sum_{\nu\in K} c_\nu^2(\log\log\log \nu)^\eta \Psi(\nu)$
, where C(η) depends on η only. This improves a recent result obtained by the author.
We obtain a lower bound on the largest prime factor of the denominator of rational numbers in the Cantor set. This gives a stronger version of a recent result of Schleischitz [‘On intrinsic and extrinsic rational approximation to Cantor sets’, Ergodic Theory Dyn. Syst. to appear] obtained via a different argument.
We discuss a truncated identity of Euler and present a combinatorial proof of it. We also derive two finite identities as corollaries. As an application, we establish two related $q$-congruences for sums of $q$-Catalan numbers, one of which has been proved by Tauraso [‘$q$-Analogs of some congruences involving Catalan numbers’, Adv. Appl. Math.48 (2012), 603–614] by a different method.
We introduce a notion of $q$-deformed rational numbers and $q$-deformed continued fractions. A $q$-deformed rational is encoded by a triangulation of a polygon and can be computed recursively. The recursive formula is analogous to the $q$-deformed Pascal identity for the Gaussian binomial coefficients, but the Pascal triangle is replaced by the Farey graph. The coefficients of the polynomials defining the $q$-rational count quiver subrepresentations of the maximal indecomposable representation of the graph dual to the triangulation. Several other properties, such as total positivity properties, $q$-deformation of the Farey graph, matrix presentations and $q$-continuants are given, as well as a relation to the Jones polynomial of rational knots.
Under sufficiently strong assumptions about the first prime in an arithmetic progression, we prove that the number of Carmichael numbers up to $X$ is $\gg X^{1-R}$, where $R=(2+o(1))\log \log \log \log X/\text{log}\log \log X$. This is close to Pomerance’s conjectured density of $X^{1-R}$ with $R=(1+o(1))\log \log \log X/\text{log}\log X$.
In this note we use some $q$-congruences proved by the method of ‘creative microscoping’ to prove two conjectures on supercongruences involving central binomial coefficients. In particular, we confirm the $m=5$ case of Conjecture 1.1 of Guo [‘Some generalizations of a supercongruence of Van Hamme’, Integral Transforms Spec. Funct.28 (2017), 888–899].
We prove irregularities in the distribution of prime numbers in any Beatty sequence ${\mathcal{B}}(\unicode[STIX]{x1D6FC},\unicode[STIX]{x1D6FD})$, where $\unicode[STIX]{x1D6FC}$ is a positive real irrational number of finite type.
A positive-definite diagonal quadratic form $a_{1}x_{1}^{2}+\cdots +a_{n}x_{n}^{2}\;(a_{1},\ldots ,a_{n}\in \mathbb{N})$ is said to be prime-universal if it is not universal and for every prime $p$ there are integers $x_{1},\ldots ,x_{n}$ such that $a_{1}x_{1}^{2}+\cdots +a_{n}x_{n}^{2}=p$. We determine all possible prime-universal ternary quadratic forms $ax^{2}+by^{2}+cz^{2}$ and all possible prime-universal quaternary quadratic forms $ax^{2}+by^{2}+cz^{2}+dw^{2}$. The prime-universal ternary forms are completely determined. The prime-universal quaternary forms are determined subject to the validity of two conjectures. We make no use of a result of Bhargava concerning quadratic forms representing primes which is stated but not proved in the literature.
For every integer $k\geq 2$ and every $A\subseteq \mathbb{N}$, we define the $k$-directions sets of $A$ as $D^{k}(A):=\{\boldsymbol{a}/\Vert \boldsymbol{a}\Vert :\boldsymbol{a}\in A^{k}\}$ and $D^{\text{}\underline{k}}(A):=\{\boldsymbol{a}/\Vert \boldsymbol{a}\Vert :\boldsymbol{a}\in A^{\text{}\underline{k}}\}$, where $\Vert \cdot \Vert$ is the Euclidean norm and $A^{\text{}\underline{k}}:=\{\boldsymbol{a}\in A^{k}:a_{i}\neq a_{j}\text{ for all }i\neq j\}$. Via an appropriate homeomorphism, $D^{k}(A)$ is a generalisation of the ratio set$R(A):=\{a/b:a,b\in A\}$. We study $D^{k}(A)$ and $D^{\text{}\underline{k}}(A)$ as subspaces of $S^{k-1}:=\{\boldsymbol{x}\in [0,1]^{k}:\Vert \boldsymbol{x}\Vert =1\}$. In particular, generalising a result of Bukor and Tóth, we provide a characterisation of the sets $X\subseteq S^{k-1}$ such that there exists $A\subseteq \mathbb{N}$ satisfying $D^{\text{}\underline{k}}(A)^{\prime }=X$, where $Y^{\prime }$ denotes the set of accumulation points of $Y$. Moreover, we provide a simple sufficient condition for $D^{k}(A)$ to be dense in $S^{k-1}$. We conclude with questions for further research.
Suppose $a^{2}(a^{2}+1)$ divides $b^{2}(b^{2}+1)$ with $b>a$. We improve a previous result and prove a gap principle, without any additional assumptions, namely $b\gg a(\log a)^{1/8}/(\log \log a)^{12}$. We also obtain $b\gg _{\unicode[STIX]{x1D716}}a^{15/14-\unicode[STIX]{x1D716}}$ under the abc conjecture.
which was originally conjectured by Long and later proved by Swisher. This confirms a conjecture of the second author [‘A $q$-analogue of the (L.2) supercongruence of Van Hamme’, J. Math. Anal. Appl.466 (2018), 749–761].
Let $n$ be a positive integer and $a$ an integer prime to $n$. Multiplication by $a$ induces a permutation over $\mathbb{Z}/n\mathbb{Z}=\{\overline{0},\overline{1},\ldots ,\overline{n-1}\}$. Lerch’s theorem gives the sign of this permutation. We explore some applications of Lerch’s result to permutation problems involving quadratic residues modulo $p$ and confirm some conjectures posed by Sun [‘Quadratic residues and related permutations and identities’, Preprint, 2018, arXiv:1809.07766]. We also study permutations involving arbitrary $k$th power residues modulo $p$ and primitive roots modulo a power of $p$.
We give a new formula for the number of cyclic subgroups of a finite abelian group. This is based on Burnside’s lemma applied to the action of the power automorphism group. The resulting formula generalises Menon’s identity.
For $\unicode[STIX]{x1D6FD}\in (1,2]$ the $\unicode[STIX]{x1D6FD}$-transformation $T_{\unicode[STIX]{x1D6FD}}:[0,1)\rightarrow [0,1)$ is defined by $T_{\unicode[STIX]{x1D6FD}}(x)=\unicode[STIX]{x1D6FD}x\hspace{0.6em}({\rm mod}\hspace{0.2em}1)$. For $t\in [0,1)$ let $K_{\unicode[STIX]{x1D6FD}}(t)$ be the survivor set of $T_{\unicode[STIX]{x1D6FD}}$ with hole $(0,t)$ given by
$$\begin{eqnarray}K_{\unicode[STIX]{x1D6FD}}(t):=\{x\in [0,1):T_{\unicode[STIX]{x1D6FD}}^{n}(x)\not \in (0,t)\text{ for all }n\geq 0\}.\end{eqnarray}$$
In this paper we characterize the bifurcation set $E_{\unicode[STIX]{x1D6FD}}$ of all parameters $t\in [0,1)$ for which the set-valued function $t\mapsto K_{\unicode[STIX]{x1D6FD}}(t)$ is not locally constant. We show that $E_{\unicode[STIX]{x1D6FD}}$ is a Lebesgue null set of full Hausdorff dimension for all $\unicode[STIX]{x1D6FD}\in (1,2)$. We prove that for Lebesgue almost every $\unicode[STIX]{x1D6FD}\in (1,2)$ the bifurcation set $E_{\unicode[STIX]{x1D6FD}}$ contains infinitely many isolated points and infinitely many accumulation points arbitrarily close to zero. On the other hand, we show that the set of $\unicode[STIX]{x1D6FD}\in (1,2)$ for which $E_{\unicode[STIX]{x1D6FD}}$ contains no isolated points has zero Hausdorff dimension. These results contrast with the situation for $E_{2}$, the bifurcation set of the doubling map. Finally, we give for each $\unicode[STIX]{x1D6FD}\in (1,2)$ a lower and an upper bound for the value $\unicode[STIX]{x1D70F}_{\unicode[STIX]{x1D6FD}}$ such that the Hausdorff dimension of $K_{\unicode[STIX]{x1D6FD}}(t)$ is positive if and only if $t<\unicode[STIX]{x1D70F}_{\unicode[STIX]{x1D6FD}}$. We show that $\unicode[STIX]{x1D70F}_{\unicode[STIX]{x1D6FD}}\leq 1-(1/\unicode[STIX]{x1D6FD})$ for all $\unicode[STIX]{x1D6FD}\in (1,2)$.