To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
For $n= 1, 2, 3, \ldots $ let ${S}_{n} $ be the sum of the first $n$ primes. We mainly show that the sequence ${a}_{n} = \sqrt[n]{{S}_{n} / n}~(n= 1, 2, 3, \ldots )$ is strictly decreasing, and moreover the sequence ${a}_{n+ 1} / {a}_{n} ~(n= 10, 11, \ldots )$ is strictly increasing. We also formulate similar conjectures involving twin primes or partitions of integers.
A natural number $n$ is called multiperfect or $k$-perfect for integer $k\ge 2$ if $\sigma (n)=kn$, where $\sigma (n)$ is the sum of the positive divisors of $n$. In this paper, we establish a theorem on odd multiperfect numbers analogous to Euler’s theorem on odd perfect numbers. We describe the divisibility of the Euler part of odd multiperfect numbers and characterise the forms of odd perfect numbers $n=\pi ^\alpha M^2$ such that $\pi \equiv \alpha ~({\rm mod}~8)$, where $\pi ^\alpha $ is the Euler factor of $n$. We also present some examples to show the nonexistence of odd perfect numbers of certain forms.
Given an integer $q\ge 2$, a $q$-normal number is an irrational number $\eta $ such that any preassigned sequence of $\ell $ digits occurs in the $q$-ary expansion of $\eta $ at the expected frequency, namely $1/q^\ell $. In a recent paper we constructed a large family of normal numbers, showing in particular that, if $P(n)$ stands for the largest prime factor of $n$, then the number $0.P(2)P(3)P(4)\ldots ,$ the concatenation of the numbers $P(2), P(3), P(4), \ldots ,$ each represented in base $q$, is a $q$-normal number, thereby answering in the affirmative a question raised by Igor Shparlinski. We also showed that $0.P(2+1)P(3+1)P(5+1)\ldots P(p+1)\ldots ,$ where $p$ runs through the sequence of primes, is a $q$-normal number. Here, we show that, given any fixed integer $k\ge 2$, the numbers $0.P_k(2)P_k(3)P_k(4)\ldots $ and $0. P_k(2+1)P_k(3+1)P_k(5+1)\ldots P_k(p+1)\ldots ,$ where $P_k(n)$ stands for the $k{\rm th}$ largest prime factor of $n$, are $q$-normal numbers. These results are part of more general statements.
It is well known that the regular continued fraction expansion of a quadratic irrational is symmetric about its centre; we refer to this symmetry as horizontal. However, an additional vertical symmetry is exhibited by the continued fraction expansions arising from a family of quadratics known as Schinzel sleepers. This paper provides a method for generating every Schinzel sleeper and investigates their period lengths as well as both their horizontal and vertical symmetries.
Conjecturally, the only real algebraic numbers with bounded partial quotients in their regular continued fraction expansion are rationals and quadratic irrationals. We show that the corresponding statement is not true for complex algebraic numbers in a very strong sense, by constructing, for every even degree $d$, algebraic numbers of degree $d$ that have bounded complex partial quotients in their Hurwitz continued fraction expansion. The Hurwitz expansion is the complex generalization of the nearest integer continued fraction for real numbers. In the case of real numbers the boundedness of regular and nearest integer partial quotients is equivalent.
We study positive integers $n$ such that $n\phi (n)\equiv 2\hspace{0.167em} {\rm mod}\hspace{0.167em} \sigma (n)$, where $\phi (n)$ and $\sigma (n)$ are the Euler function and the sum of divisors function of the positive integer $n$, respectively. We give a general ineffective result showing that there are only finitely many such $n$ whose prime factors belong to a fixed finite set. When this finite set consists only of the two primes $2$ and $3$ we use continued fractions to find all such positive integers $n$.
We describe the period structure of the optimal continued fraction expansion of a quadratic surd, in terms of the period of its nearest square continued fraction expansion. The analysis results in a faster algorithm for determining the optimal continued fraction expansion of a quadratic surd.
Following up on a paper of Balamohan et al. [‘On the behavior of a variant of Hofstadter’s $q$-sequence’, J. Integer Seq.10 (2007)], we analyze a variant of Hofstadter’s $Q$-sequence and show that its frequency sequence is 2-automatic. An automaton computing the sequence is explicitly given.
Let $\{U_n\}$ be given by $U_0=1$ and $U_n=-2\sum _{k=1}^{[n/2]} \binom n{2k}U_{n-2k}\ (n\ge 1)$, where $[\cdot ]$ is the greatest integer function. Then $\{U_n\}$ is analogous to the Euler numbers and $U_{2n}=3^{2n}E_{2n}(\frac 13)$, where $E_m(x)$ is the Euler polynomial. In a previous paper we gave many properties of $\{U_n\}$. In this paper we present a summation formula and several congruences involving $\{U_n\}$.
Let k be any given positive integer. We define the arithmetic function gk for any positive integer n by We first show that gk is periodic. Subsequently, we provide a detailed local analysis of the periodic function gk, and determine its smallest period. We also obtain an asymptotic formula for log lcm0≤i≤k{(n+i)2+1}.
Denote the nth convergent of the continued fraction α=[a0;a1,a2,…] by pn/qn=[a0;a1,…,an]. In this paper we give exact formulae for the quantities Dn:=qnα−pn in several typical types of Tasoev continued fractions. A simple example of the type of Tasoev continued fraction considered is α=[0;ua,ua2,ua3,…].
We give upper and lower bounds on the count of positive integers n ≤ x dividing the nth term of a non-degenerate linearly recurrent sequence with simple roots.
Let q be an odd prime. In this paper, we prove that if N is an odd perfect number with qα∥N then σ(N/qα)/qα≠p,p2,p3,p4,p1p2,p21p2, where p,p1, p2 are primes and p1≠p2. This improves a result of Dris and Luca [‘A note on odd perfect numbers’, arXiv:1103.1437v3 [math.NT]]: σ(N/qα)/qα≠1,2,3,4,5. Furthermore, we prove that for K≥1 , if N is an odd perfect number with qα ∥N and σ(N/qα)/qα ≤K, then N≤4K8.
In 1987, Gordon gave an integer primality condition similar to the familiar test based on Fermat’s little theorem, but based instead on the arithmetic of elliptic curves with complex multiplication. We prove the existence of infinitely many composite numbers simultaneously passing all elliptic curve primality tests assuming a weak form of a standard conjecture on the bound on the least prime in (special) arithmetic progressions. Our results are somewhat more general than both the 1999 dissertation of the first author (written under the direction of the third author) and a 2010 paper on Carmichael numbers in a residue class written by Banks and the second author.
We describe a variant of Fermat’s factoring algorithm which is competitive with SQUFOF in practice but has heuristic run time complexity O(n1/3) as a general factoring algorithm. We also describe a sparse class of integers for which the algorithm is particularly effective. We provide speed comparisons between an optimised implementation of the algorithm described and the tuned assortment of factoring algorithms in the Pari/GP computer algebra package.
For a primitive root g modulo a prime p≥1 we obtain upper bounds on the gaps between the residues modulo p of the N consecutive powers agn, n=1,…,N, which is uniform over all integers a with gcd (a,p)=1.
In this paper we give an extension of a curious combinatorial identity due to B. Sury. Our proof is very simple and elementary. As an application, we obtain two congruences for Fermat quotients modulo p3. Moreover, we prove an extension of a result by H. Pan that generalizes Carlitz’s congruence.
Let k≥2 be an integer. A natural number n is called k-perfect if σ(n)=kn. For any integer r≥1, we prove that the number of odd k-perfect numbers with at most r distinct prime factors is bounded by (k−1)4r3.