To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We analyse several aspects of a class of simple counting processes that can emerge in some fields of applications where a change point occurs. In particular, under simple conditions we prove a significant inequality for the stochastic intensity.
We use a discrete-time analysis, giving necessary and sufficient conditions for the almost-sure convergence of ARCH(1) and GARCH(1,1) discrete-time models, to suggest an extension of the ARCH and GARCH concepts to continuous-time processes. Our ‘COGARCH’ (continuous-time GARCH) model, based on a single background driving Lévy process, is different from, though related to, other continuous-time stochastic volatility models that have been proposed. The model generalises the essential features of discrete-time GARCH processes, and is amenable to further analysis, possessing useful Markovian and stationarity properties.
Within reliability theory, identifiability problems arise through competing risks. If we have a series system of several components, and if that system is replaced or repaired to as good as new on failure, then the different component failures represent competing risks for the system. It is well known that the underlying component failure distributions cannot be estimated from the observable data (failure time and identity of failed component) without nontestable assumptions such as independence. In practice many systems are not subject to the ‘as good as new’ repair regime. Hence, the objective of this paper is to contrast the identifiability issues arising for different repair regimes. We consider the problem of identifying a model within a given class of probabilistic models for the system. Different models corresponding to different repair strategies are considered: a partial-repair model, where only the failing component is repaired; perfect repair, where all components are as good as new after a failure; and minimal repair, where components are only minimally repaired at failures. We show that on the basis of observing a single socket, the partial-repair model is identifiable, while the perfect- and minimal-repair models are not.
We study a one-dimensional telegraph process (Mt)t≥0 describing the position of a particle moving at constant speed between Poisson times at which new velocities are chosen randomly. The exact distribution of Mt and its first two moments are derived. We characterize the level hitting times of Mt in terms of integro-differential equations which can be solved in special cases.
We consider an infinite-capacity second-order fluid queue governed by a continuous-time Markov chain and with linear service rate. The variability of the traffic is modeled by a Brownian motion and a local variance function modulated by the Markov chain and proportional to the fluid level in the queue. The behavior of this second-order fluid-flow model is described by a linear stochastic differential equation, satisfied by the transient queue level. We study the transient level's convergence in distribution under weak assumptions and we obtain an expression for the stationary queue level. For the first-order case, we give a simple expression of all its moments as well as of its Laplace transform. For the second-order model we compute its first two moments.
We study the parametric perturbation of Markov chains with denumerable state spaces. We consider both regular and singular perturbations. By the latter we mean that transition probabilities of a Markov chain, with several ergodic classes, are perturbed such that (rare) transitions among the different ergodic classes of the unperturbed chain are allowed. Singularly perturbed Markov chains have been studied in the literature under more restrictive assumptions such as strong recurrence ergodicity or Doeblin conditions. We relax these conditions so that our results can be applied to queueing models (where the conditions mentioned above typically fail to hold). Assuming ν-geometric ergodicity, we are able to explicitly express the steady-state distribution of the perturbed Markov chain as a Taylor series in the perturbation parameter. We apply our results to quasi-birth-and-death processes and queueing models.
We introduce adaptive-simulation schemes for estimating performance measures for stochastic systems based on the method of control variates. We consider several possible methods for adaptively tuning the control-variate estimators, and describe their asymptotic properties. Under certain assumptions, including the existence of a ‘perfect control variate’, all of the estimators considered converge faster than the canonical rate of n−1/2, where n is the simulation run length. Perfect control variates for a variety of stochastic processes can be constructed from ‘approximating martingales’. We prove a central limit theorem for an adaptive estimator that converges at rate A similar estimator converges at rate n−1. An exponential rate of convergence is also possible under suitable conditions.
Large deviation results are obtained for the normed limit of a supercritical multitype branching process. Starting from a single individual of type i, let L[i] be the normed limit of the branching process, and let be the minimum possible population size at generation k. If is bounded in k (bounded minimum growth), then we show that P(L[i] ≤ x) = P(L[i] = 0) + xαF*[i](x) + o(xα) as x → 0. If grows exponentially in k (exponential minimum growth), then we show that −log P(L[i] ≤ x) = x−β/(1−β) G*[i](x) + o (x−β/(1−β)) as x → 0. If the maximum family size is bounded, then −log P(L[i] > x) = xδ/(δ−1)H*[i](x) + o(xδ/(δ−1)) as x → ∞. Here α, β and δ are constants obtained from combinations of the minimum, maximum and mean growth rates, and F*, G* and H* are multiplicatively periodic functions.
Let C1, C2,…,Cm be independent subordinators with finite expectations and denote their sum by C. Consider the classical risk process X(t) = x + ct - C(t). The ruin probability is given by the well-known Pollaczek–Khinchin formula. If ruin occurs, however, it will be caused by a jump of one of the subordinators Ci. Formulae for the probability that ruin is caused by Ci are derived. These formulae can be extended to perturbed risk processes of the type X(t) = x + ct - C(t) + Z(t), where Z is a Lévy process with mean 0 and no positive jumps.
For a given k ≥ 1, subintervals of a given interval [0, X] arrive at random and are accepted (allocated) so long as they overlap fewer than k subintervals already accepted. Subintervals not accepted are cleared, while accepted subintervals remain allocated for random retention times before they are released and made available to subsequent arrivals. Thus, the system operates as a generalized many-server queue under a loss protocol. We study a discretized version of this model that appears in reference theories for a number of applications, including communication networks, surface adsorption-desorption processes, and reservation systems. Our primary interest is in steady-state estimates of the vacant space, i.e. the total length of available subintervals kX - ∑ℓi, where the ℓi are the lengths of the subintervals currently allocated. We obtain explicit results for k = 1 and for general k with all subinterval lengths equal to 2, the classical dimer case of chemical applications. Our focus is on the asymptotic regime of large retention times.
Sums of log-normals frequently appear in a variety of situations, including engineering and financial mathematics. In particular, the pricing of Asian or basket options is directly related to finding the distributions of such sums. There is no general explicit formula for the distribution of sums of log-normal random variables. This paper looks at the limit distributions of sums of log-normal variables when the second parameter of the log-normals tends to zero or to infinity; in financial terms, this is equivalent to letting the volatility, or maturity, tend either to zero or to infinity. The limits obtained are either normal or log-normal, depending on the normalization chosen; the same applies to the reciprocal of the sums of log-normals. This justifies the log-normal approximation, much used in practice, and also gives an asymptotically exact distribution for averages of log-normals with a relatively small volatility; it has been noted that all the analytical pricing formulae for Asian options perform poorly for small volatilities. Asymptotic formulae are also found for the moments of the sums of log-normals. Results are given for both discrete and continuous averages. More explicit results are obtained in the case of the integral of geometric Brownian motion.
This paper studies recurrence properties of autoregressive (AR) processes with ‘super-heavy-tailed’ innovations. Specifically, we study the case where the innovations are distributed, roughly speaking, as log-Pareto random variables (i.e. the tail decay is essentially a logarithm raised to some power). We show that these processes exhibit interesting and somewhat surprising behaviour. In particular, we show that AR(1) processes, with the usual root assumption that is necessary for stability, can exhibit null-recurrent as well as transient dynamics when the innovations follow a log-Cauchy-type distribution. In this regime, the recurrence classification of the process depends, somewhat surprisingly, on the value of the constant pre-multiplier of this distribution. More generally, for log-Pareto innovations, we provide a positive-recurrence/null-recurrence/transience classification of the corresponding AR processes.
Discrete time-series models are commonly used to represent economic and physical data. In decision making and system control, the first-passage time and level-crossing probabilities of these processes against certain threshold levels are important quantities. In this paper, we apply an integral-equation approach together with the state-space representations of time-series models to evaluate level-crossing probabilities for the AR(p) and ARMA(1,1) models and the mean first passage time for AR(p) processes. We also extend Novikov's martingale approach to ARMA(p,q) processes. Numerical schemes are used to solve the integral equations for specific examples.
Continuous-time random walks incorporate a random waiting time between random jumps. They are used in physics to model particle motion. A physically realistic rescaling uses two different time scales for the mean waiting time and the deviation from the mean. This paper derives the scaling limits for such processes. These limit processes are governed by fractional partial differential equations that may be useful in physics. A transfer theorem for weak convergence of finite-dimensional distributions of stochastic processes is also obtained.
The Kesten-Stigum theorem for the one-type Galton-Watson process gives necessary and sufficient conditions for mean convergence of the martingale formed by the population size normed by its expectation. Here, the approach to this theorem pioneered by Lyons, Pemantle and Peres (1995) is extended to certain kinds of martingales defined for Galton-Watson processes with a general type space. Many examples satisfy stochastic domination conditions on the offspring distributions and suitable domination conditions combine nicely with general conditions for mean convergence to produce moment conditions, like the X log X condition of the Kesten-Stigum theorem. A general treatment of this phenomenon is given. The application of the approach to various branching processes is indicated. However, the main reason for developing the theory is to obtain martingale convergence results in a branching random walk that do not seem readily accessible with other techniques. These results, which are natural extensions of known results for martingales associated with binary branching Brownian motion, form the main application.
We propose a stochastic modelling of the PCR amplification process by a size-dependent branching process starting as a supercritical Bienaymé-Galton-Watson transient phase and then having a saturation near-critical size-dependent phase. This model allows us to estimate the probability of replication of a DNA molecule at each cycle of a single PCR trajectory with a very good accuracy.
It is shown that the method of deriving bounds on the rate of convergence for birth–death processes developed by Zeifman can be effectively applied to stochastic models of chemical reactions.
We study geometric moment contracting properties of nonlinear time series that are expressed in terms of iterated random functions. Under a Dini-continuity condition, a central limit theorem for additive functionals of such systems is established. The empirical processes of sample paths are shown to converge to Gaussian processes in the Skorokhod space. An exponential inequality is established. We present a bound for joint cumulants, which ensures the applicability of several asymptotic results in spectral analysis of time series. Our results provide a vehicle for statistical inferences for fractals and many nonlinear time series models.
Kingman's classical theory of the coalescent uncovered the basic pattern of genealogical trees of random samples of individuals in large but time-constant populations. Time is viewed as being discrete and is identified with non-overlapping generations. Reproduction can be very generally taken as exchangeable (meaning that the labelling of individuals in each generation carries no significance). Recent generalisations have dealt with population sizes exhibiting given deterministic or (minor) random fluctuations. We consider population sizes which constitute a stationary Markov chain, explicitly allowing large fluctuations in short times. Convergence of the genealogical tree, as population size tends to infinity, towards the (time-scaled) coalescent is proved under minimal conditions. As a result, we obtain a formula for effective population size, generalising the well-known harmonic mean expression for effective size.
Recently, several authors have studied the transient and the equilibrium behaviour of stochastic population processes with total catastrophes. These models are reasonable for modelling populations that are exposed to extreme disastrous phenomena. However, under mild disastrous conditions, the appropriate model is a stochastic process subject to binomial catastrophes. In the present paper we consider a special such model in which a population evolves according to a compound Poisson process and catastrophes occur according to a renewal process. Every individual of the population survives after a catastrophe with probability p, independently of anything else, i.e. the population size is reduced according to a binomial distribution. We study the equilibrium distribution of this process and we derive an algorithmic procedure for its approximate computation. Bounds on the error of this approximation are also included.