We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We compare two versions of a symmetric two-queue polling model with switchover times and setup times. The SI version has State-Independent setups, according to which the server sets up at the polled queue whether or not work is waiting there; and the SD version has State-Dependent setups, according to which the server sets up only when work is waiting at the polled queue. Naive intuition would lead one to believe that the SD version should perform better than the SI version. We characterize the difference in the expected waiting times of these two versions, and we uncover some surprising facts. In particular, we show that, regardless of the server utilization or the service-time distribution, the SD version performs (i) the same as, (ii) worse than, or (iii) better than its SI counterpart if the switchover and setup times are, respectively, (i) both constants, (ii) variable (i.e. non-deterministic) and constant, or (iii) constant and variable. Only (iii) is consistent with naive intuition.
We consider the many-server Poisson queue M/M/c with arrival intensity λ, mean service time 1 and λ/c < 1. Let X(t) be the number of customers in the system at time t and assume that the system is initially empty. Then pn(t) = P(X(t) = n) converges to the stationary probability πn = P(X = n). The integrals ∫0∞[E(X)-E(X(t))]dt and ∫0∞[P(X≤n) − P(X(t)≤n)]dt are a measure of the speed of convergence towards stationarity. We express these integrals in terms of λ and c.
We consider an infinite server queueing system. An examination of sample path dynamics allows a straightforward development of integral equations having solutions that give time-dependent occupancy (number of customers) and backlog (unfinished work) distributions (conditioned on the time of the first arrival) for the GI/G/∞ queue. These integral equations are amenable to numerical evaluation and can be generalized to characterize GIX/G/∞ queue. Two examples are given to illustrate the results.
The Greenberg–Hastings model (GHM) is a simple cellular automaton which emulates two properties of excitable media: excitation by contact and a refractory period. We study two ways in which external stimulation can make ring dynamics in the GHM recurrent. The first scheme involves the initial placement of excitation centres which gradually lose strength, i.e. each time they become inactive (and then stay inactive forever) with probability 1 − pf. In this case, the density of excited sites must go to 0; however, their long–term connectivity structure undergoes a phase transition as pf increases from 0 to 1. The second proposed rule utilizes continuous nucleation in that new rings are started at every rested site with probability ps. We show that, for small ps, these dynamics make a site excited about every ps−1/3 time units. This result yields some information about the asymptotic shape of a closely related random growth model.
A well-known result on the distribution tail of the maximum of a random walk with heavy-tailed increments is extended to more general stochastic processes. Results are given in different settings, involving, for example, stationary increments and regeneration. Several examples and counterexamples illustrate that the conditions of the theorems can easily be verified in practice and are in part necessary. The examples include superimposed renewal processes, Markovian arrival processes, semi-Markov input and Cox processes with piecewise constant intensities.
We consider a class of random point and germ-grain processes, obtained using a rather natural weighting procedure. Given a Poisson point process, on each point one places a grain, a (possibly random) compact convex set. Let Ξ be the union of all grains. One can now construct new processes whose density is derived from an exponential of a linear combination of quermass functionals of Ξ. If only the area functional is used, then the area-interaction point process is recovered. New point processes arise if we include the perimeter length functional, or the Euler functional (number of components minus number of holes). The main question addressed by the paper is that of when the resulting point process is well-defined: geometric arguments are used to establish conditions for the point process to be stable in the sense of Ruelle.
Consider an aggregate arrival process AN obtained by multiplexing N on-off processes with exponential off periods of rate λ and subexponential on periods τon. As N goes to infinity, with λN → Λ, AN approaches an M/G/∞ type process. Both for finite and infinite N, we obtain the asymptotic characterization of the arrival process activity period.
Using these results we investigate a fluid queue with the limiting M/G/∞ arrival process At∞ and capacity c. When on periods are regularly varying (with non-integer exponent), we derive a precise asymptotic behavior of the queue length random variable QtP observed at the beginning of the arrival process activity periods
where ρ = 𝔼At∞ < c; r (c ≤ r) is the rate at which the fluid is arriving during an on period. The asymptotic (time average) queue distribution lower bound is obtained under more general assumptions regarding on periods than regular variation.
In addition, we analyse a queueing system in which one on-off process, whose on period belongs to a subclass of subexponential distributions, is multiplexed with independent exponential processes with aggregate expected rate 𝔼et. This system is shown to be asymptotically equivalent to the same queueing system with the exponential arrival processes being replaced by their total mean value 𝔼et.
This paper examines the connection between loss networks without controls and Markov random field theory. The approach taken yields insight into the structure and computation of network equilibrium distributions, and into the nature of spatial dependence in networks. In addition, it provides further insight into some commonly used approximations, enables the development of more refined approximations, and permits the derivation of some asymptotically exact results.
Long-range dependence has been recently asserted to be an important characteristic in modeling telecommunications traffic. Inspired by the integral relationship between the fractional Brownian motion and the standard Brownian motion, we model a process with long-range dependence, Y, as a fractional integral of Riemann-Liouville type applied to a more standard process X—one that does not have long-range dependence. When X takes the form of a sample path process with bounded stationary increments, we provide a criterion for X to satisfy a moderate deviations principle (MDP). Based on the MDP of X, we then establish the MDP for Y. Furthermore, we characterize, in terms of the MDP, the transient behavior of queues when fed with the long-range dependent input process Y. In particular, we identify the most likely path that leads to a large queue, and demonstrate that unlike the case where the input has short-range dependence, the path here is nonlinear.
A multitype chain-binomial epidemic process is defined for a closed finite population by sampling a simple multidimensional counting process at certain points. The final size of the epidemic is then characterized, given the counting process, as the smallest root of a non-linear system of equations. By letting the population grow, this characterization is used, in combination with a branching process approximation and a weak convergence result for the counting process, to derive the asymptotic distribution of the final size. This is done for processes with an irreducible contact structure both when the initial infection increases at the same rate as the population and when it stays fixed.
We introduce open stochastic fluid networks that can be regarded as continuous analogues or fluid limits of open networks of infinite-server queues. Random exogenous input may come to any of the queues. At each queue, a c.d.f.-valued stochastic process governs the proportion of the input processed by a given time after arrival. The routeing may be deterministic (a specified sequence of successive queue visits) or proportional, i.e. a stochastic transition matrix may govern the proportion of the output routed from one queue to another. This stochastic fluid network with deterministic c.d.f.s governing processing at the queues arises as the limit of normalized networks of infinite-server queues with batch arrival processes where the batch sizes grow. In this limit, one can think of each particle having an evolution through the network, depending on its time and place of arrival, but otherwise independent of all other particles. A key property associated with this independence is the linearity: the workload associated with a superposition of inputs, each possibly having its own pattern of flow through the network, is simply the sum of the component workloads. As with infinite-server queueing models, the tractability makes the linear stochastic fluid network a natural candidate for approximations.
In this paper we study the supremum distribution of a class of Gaussian processes having stationary increments and negative drift using key results from Extreme Value Theory. We focus on deriving an asymptotic upper bound to the tail of the supremum distribution of such processes. Our bound is valid for both discrete- and continuous-time processes. We discuss the importance of the bound, its applicability to queueing problems, and show numerical examples to illustrate its performance.
We define a stochastic process {Xn} based on partial sums of a sequence of integer-valued random variables (K0,K1,…). The process can be represented as an urn model, which is a natural generalization of a gambling model used in the first published exposition of the criticality theorem of the classical branching process. A special case of the process is also of interest in the context of a self-annihilating branching process. Our main result is that when (K1,K2,…) are independent and identically distributed, with mean a ∊ (1,∞), there exist constants {cn} with cn+1/cn → a as n → ∞ such that Xn/cn converges almost surely to a finite random variable which is positive on the event {Xn ↛ 0}. The result is extended to the case of exchangeable summands.
We consider a classical population flow model in which individuals pass through n strata with certain state-dependent probabilities and at every time t = 0,1,2,…, there is a stochastic inflow of new individuals to every stratum. For a stationary inflow process we prove the convergence of the joint distribution of group sizes and derive the limiting Laplace transform.
In this paper a central limit theorem is proved for wave-functionals defined as the sums of wave amplitudes observed in sample paths of stationary continuously differentiable Gaussian processes. Examples illustrating this theory are given.
We study the delay in cyclic polling systems with mixtures of gated and exhaustive service, and with deterministic switch-over times. We show that, under proper scalings, the waiting-time distribution at each of the queues converges to a uniform distribution over a known interval when the switch-over times tend to infinity.
We study a fluid flow queueing system with m independent sources alternating between periods of silence and activity; m ≥ 2. The distribution function of the activity periods of one source, is supposed to be intermediate regular varying. We show that the distribution of the net increment of the buffer during an aggregate activity period (i.e. when at least one source is active) is asymptotically tail-equivalent to the distribution of the net input during a single activity period with intermediate regular varying distribution function. In this way, we arrive at an asymptotic representation of the Palm-stationary tail-function of the buffer content at the beginning of aggregate activity periods. Our approach is probabilistic and extends recent results of Boxma (1996; 1997) who considered the special case of regular variation.
In this paper we derive asymptotically exact expressions for buffer overflow probabilities and cell loss probabilities for a finite buffer which is fed by a large number of independent and stationary sources. The technique is based on scaling, measure change and local limit theorems and extends the recent results of Courcoubetis and Weber on buffer overflow asymptotics. We discuss the cases when the buffers are of the same order as the transmission bandwidth as well as the case of small buffers. Moreover we show that the results hold for a wide variety of traffic sources including ON/OFF sources with heavy-tailed distributed ON periods, which are typical candidates for so-called ‘self-similar’ inputs, showing that the asymptotic cell loss probability behaves in much the same manner for such sources as for the Markovian type of sources, which has important implications for statistical multiplexing. Numerical validation of the results against simulations are also reported.
The exponential growth of computer networking demands massive upgrades in the capacity of existing networks. Traditional capacity design methodologies, developed with the single-class networking paradigm in mind, overlook the non-cooperative structure of modern networks. Consequently, such design approaches entail the danger of degraded performance when resources are added to a network, a phenomenon known as the Braess paradox.
The present paper proposes methods for adding resources efficiently to a non-cooperative network of general topology. It is shown that the paradox is avoided when resources are added across the network, rather than on a local scale, and when upgrades are focused on direct connections between the sources and destinations. The relevance of these results for modern networks is demonstrated.
In this paper we study the asymptotic behavior of the tail of the stationary backlog distribution in a single server queue with constant service capacity c, fed by the so-called M/G/∞ input process or Cox input process. Asymptotic lower bounds are obtained for any distribution G and asymptotic upper bounds are derived when G is a subexponential distribution. We find the bounds to be tight in some instances, e.g. when G corresponds to either the Pareto or lognormal distribution and c − ρ < 1, where ρ is the arrival rate at the buffer.