To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The notion of a recursive causal graph is introduced, hopefully capturing the essential aspects of the path diagrams usually associated with recursive causal models. We describe the conditional independence constraints which such graphs are meant to embody and prove a theorem relating the fulfilment of these constraints by a probability distribution to a particular sort of factorisation. The relation of our results to the usual linear structural equations on the one hand, and to log-linear models, on the other, is also explained
By amalgamating the approaches of Tweedie (1974) and Nummelin (1977), an α-theory is developed for general semi-Markov processes. It is shown that α-transient, α-recurrent and α-positive recurrent processes can be defined, with properties analogous to those for transient, recurrent and positive recurrent processes. Limit theorems for α-positive recurrent processes follow by transforming to the probabilistic case, as in the above references: these then give results on the existence and form of quasistationary distributions, extending those of Tweedie (1975) and Nummelin (1976).