To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The paper gives a spectral representation for a class of random fields which are bounded in mean square almost surely. A characterisation of the corresponding spectral measure in the representation is obtained based on Beurling's duality theory and generalised Fourier transforms. A representation for the covariance function of asymptotically stationary random fields is also derived.
Two recent papers by Petruccelli and Woolford (1984) and Chan et al. (1985) showed that the key element governing ergodicity of a threshold AR(1) model is the joint behavior of the two linear AR(1) pieces falling in the two boundary threshold regimes. They used essentially the necessary and sufficient conditions for ergodicity of a general Markov chain of Tweedie (1974), (1975) in a rather clever manner. However, it is difficult to extend the results to the more general threshold ARMA models. Besides, irreducibility is also required to apply Tweedie's results. In this paper, instead of pursuing the ideas in Tweedie's results, we shall develop a criterion similar in spirit to the technique used by Beneš (1967) in the context of continuous-time Markov chains. Consequently, we derive a necessary and sufficient condition for existence of a strictly stationary solution of a general non-linear ARMA model to be introduced in Section 2 of this paper. This condition is then applied to the threshold ARMA(1, q) model to yield a sufficient condition for strict stationarity which is identical to the condition given by Petruccelli and Woolford (1984) for the threshold AR(1). Hence, the conjecture that the moving average component does not affect stationarity is partially verified. Furthermore, under an additional irreducibility assumption, ergodicity of a non-linear ARMA model is established. The paper then concludes with a necessary condition for stationarity of the threshold ARMA(1, q) model.
The problem of estimating the transfer function of a linear system, together with the spectral density of an additive disturbance, is considered. The set of models used consists of linear rational transfer functions and the spectral densities are estimated from a finite-order autoregressive disturbance description. The true system and disturbance spectrum are, however, not necessarily of finite order. We investigate the properties of the estimates obtained as the number of observations tends to ∞ at the same time as the model order employed tends to ∞. It is shown that the estimates are strongly consistent and asymptotically normal, and an expression for the asymptotic variances is also given. The variance of the transfer function estimate at a certain frequency is related to the signal/noise ratio at that frequency and the model orders used, as well as the number of observations. The variance of the noise spectral estimate relates in a similar way to the squared value of the true spectrum.
Discrete minification processes are introduced and it is proved that the discrete first-order autoregression of McKenzie (1986) and the discrete minification process are mutually time-reversible if and only if they have common marginal geometric distribution, corresponding to a result for continuous processes given by Chernick et al. (1988). It is also proved that a discrete minification process is time-reversible if and only if it has marginal Bernoulli distribution.
A simple operation is described which inverts Bernoulli multiplication. It is used to define two classes of stationary reversible Markov processes with general marginal distribution. These are compared to the DAR(1) process of Jacobs and Lewis (1978). LJAR(1) is used to model ovulation rate time series.
Consider the additive effects outliers (A.O.) model where one observes , with The sequence of r.v.s is independent of and , are i.i.d. with d.f. , where the d.f.s Ln, n ≦ 0, are not necessarily known and εj's are i.i.d.. This paper discusses the asymptotic behavior of functional least squares estimators under the above model. Uniform consistency and uniform strong consistency of these estimators are proven. The weak convergence of these estimators to a Gaussian process and their asymptotic biases are also discussed under the above A.O. model.