To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The Bernstein-von Mises theorem, concerning the convergence of suitably normalized and centred posterior density to normal density, is proved for a certain class of linearly parametrized parabolic stochastic partial differential equations (SPDEs) as the number of Fourier coefficients in the expansion of the solution increases to infinity. As a consequence, the Bayes estimators of the drift parameter, for smooth loss functions and priors, are shown to be strongly consistent, asymptotically normal and locally asymptotically minimax (in the Hajek-Le Cam sense), and asymptotically equivalent to the maximum likelihood estimator as the number of Fourier coefficients become large. Unlike in the classical finite dimensional SDEs, here the total observation time and the intensity of noise remain fixed.
We consider the estimation of Markov transition matrices by Bayes’ methods. We obtain large and moderate deviation principles for the sequence of Bayesian posterior distributions.
The paper studies the impact of a broadly understood trend, which includes a change point in mean and monotonic trends studied by Bhattacharya et al. (1983), on the asymptotic behaviour of a class of tests designed to detect long memory in a stationary sequence. Our results pertain to a family of tests which are similar to Lo's (1991) modified R/S test. We show that both long memory and nonstationarity (presence of trend or change points) can lead to rejection of the null hypothesis of short memory, so that further testing is needed to discriminate between long memory and some forms of nonstationarity. We provide quantitative description of trends which do or do not fool the R/S-type long memory tests. We show, in particular, that a shift in mean of a magnitude larger than N-½, where N is the sample size, affects the asymptotic size of the tests, whereas smaller shifts do not do so.
Siegmund and Worsley (1995) considered the problem of testing for signals with unknown location and scale in a Gaussian random field defined on ℝN. The test statistic was the maximum of a Gaussian random field in an N+1 dimensional ‘scale space’, N dimensions for location and 1 dimension for the scale of a smoothing filter. Scale space is identical to a continuous wavelet transform with a kernel smoother as the wavelet, though the emphasis here is on signal detection rather than image compression or enhancement. Two methods were used to derive an approximate null distribution for N=2 and N=3: one based on the method of volumes of tubes, the other based on the expected Euler characteristic of the excursion set. The purpose of this paper is two-fold: to show how the latter method can be extended to higher dimensions, and to apply this more general result to χ2 fields. The result of Siegmund and Worsley (1995) then follows as a special case. In this paper the results are applied to the problem of searching for activation in brain images obtained by functional magnetic resonance imaging (fMRI).
We consider a parametrization of the Heath-Jarrow-Morton (HJM) family of term structure of interest rate models that allows a finite-dimensional Markovian representation of the stochastic dynamics. This parametrization results from letting the volatility function depend on time to maturity and on two factors: the instantaneous spot rate and one fixed-maturity forward rate. Our main purpose is an estimation methodology for which we have to model the observations under the historical probability measure. This leads us to consider as an additional third factor the market price of interest rate risk, that connects the historical and the HJM martingale measures. Assuming that the information comes from noisy observations of the fixed-maturity forward rate, the purpose is to estimate recursively, on the basis of this information, the three Markovian factors as well as the parameters in the model, in particular those in the volatility function. This leads to a nonlinear filtering problem, for the solution of which we describe an approximation methodology, based on time discretization and quantization. We prove the convergence of the approximate filters for each of the observed trajectories.
This paper raises the following question: let {Φn(A), A ⊂ ℝd} be a Poisson process with intensity nf(x), x ∈ ℝd and let c(Xi | Φn) be a Voronoi tile with nucleus Xi (a jump point of Φn). Let μ(.) denote Lebesgue measure in ℝd. Is it true that, for any bounded measurable subset B of ℝd, ∑Xi∈Bμ(c(Xi| Φn)) → μ(B) almost surely as n → ∞ only if f > 0 almost everywhere? This statement can be viewed as the strong law of large numbers for Voronoi tessellation. Though the positive answer may seem ‘obvious’, we could not find any such statement, especially for arbitrary measurable B and nonhomogeneous Poisson processes. For B with the boundary of Lebesgue measure 0 the proof is simple. We prove in this paper that the statement is true for ℝ1.
The distribution of the length of a typical chord of a stationary random set is an interesting feature of the set's whole distribution. We give a nonparametric estimator of the chord length distribution and prove its strong consistency. We report on a simulation experiment in which our estimator compared favourably to a reduced sample estimator. Both estimators are illustrated by applying them to an image sample from a yoghurt ferment. We briefly discuss the closely related problem of estimation of the linear contact distribution. We show by a simulation experiment that a transformation of our estimator of the chord length distribution is more efficient than a Kaplan-Meier type estimator of the linear contact distribution.
A network is a system of segments or edges in ℝd which intersect only in the segment endpoints, which are called vertices. An example is the system of edges of a tessellation. It is possible to give formulas for the specific connectivity number of a random network; in the stationary case, the intensity of the 0-curvature measure is equal to the difference of the intensities of the point processes of vertices and edge centres.
A new statistical method for estimating the orientation distribution of fibres in a fibre process is suggested where the process is observed in the form of a degraded digital greyscale image. The method is based on line transect sampling of the image in a few fixed directions. A well-known method based on stereology is available if the intersections between the transects and fibres can be counted. We extend this to the case where, instead of the intersection points, only scaled variograms of grey levels along the transects are observed. The nonlinear estimation equations for a parametric orientation distribution as well as a numerical algorithm are given. The method is illustrated by a real-world example and simulated examples where the elliptic orientation distribution is applied. In its simplicity, the new approach is intended for industrial on-line estimation of fibre orientation in disordered fibrous materials.
We are interested in estimating the intensity parameter of a Boolean model of discs (the bombing model) from a single realization. To do so, we derive the conditional distribution of the points (germs) of the underlying Poisson process. We demonstrate how to apply coupling from the past to generate samples from this distribution, and use the samples thus obtained to approximate the maximum likelihood estimator of the intensity. We discuss and compare two methods: one based on a Monte Carlo approximation of the likelihood function, the other a stochastic version of the EM algorithm.
Two non-parametric methods for the estimation of the directional measure of stationary line and fibre processes in d-dimensional space are presented. The input data for both methods are intersection counts with finitely many test windows situated in hyperplanes. The first estimator is a measure valued maximum likelihood estimator, if applied to Poisson line processes. The second estimator uses an approximation of the associated zonoid (the Steiner compact) by zonotopes. Consistency of both estimators is proved (without use of the Poisson assumption). The estimation methods are compared empirically by simulation.
We consider the problem of estimating the rate of convergence to stationarity of a continuous-time, finite-state Markov chain. This is done via an estimator of the second-largest eigenvalue of the transition matrix, which in turn is based on conventional inference in a parametric model. We obtain a limiting distribution for the eigenvalue estimator. As an example we treat an M/M/c/c queue, and show that the method allows us to estimate the time to stationarity τ within a time comparable to τ.
In this article, we prove the existence of critical Hawkes point processes with a finite average intensity, under a heavy-tail condition for the fertility rate which is related to a long-range dependence property. Criticality means that the fertility rate integrates to 1, and corresponds to the usual critical branching process, and, in the context of Hawkes point processes with a finite average intensity, it is equivalent to the absence of ancestors. We also prove an ergodic decomposition result for stationary critical Hawkes point processes as a mixture of critical Hawkes point processes, and we give conditions for weak convergence to stationarity of critical Hawkes point processes.
In generalization of the well-known formulae for quermass densities of stationary and isotropic Boolean models, we prove corresponding results for densities of mixed volumes in the stationary situation and show how they can be used to determine the intensity of non-isotropic Boolean models Z in d-dimensional space for d = 2, 3, 4. We then consider non-stationary Boolean models and extend results of Fallert on quermass densities to densities of mixed volumes. In particular, we present explicit formulae for a planar inhomogeneous Boolean model with circular grains.
The problem of discriminating between two Markov chains is considered. It is assumed that the common state space of the chains is finite and all the finite dimensional distributions are mutually absolutely continuous. The Bayes risk is expressed through large deviation probabilities for sums of random variables defined on an auxiliary Markov chain. The proofs are based on a large deviation theorem recently established by Z. Szewczak.
The paper considers the superposition of modified Omori functions as a conditional intensity function for a point process model used in the exploratory analysis of earthquake clusters. For the examples discussed, the maximum likelihood estimates converge well starting from appropriate initial values even though the number of parameters estimated can be large (though never larger than the number of observations). Three datasets are subjected to different analyses, showing the use of the model to discover and study individual clustering features.
This paper uses the epidemic-type aftershock sequence (ETAS) point process model to study certain seismicity features of the Jiashi swarm of certain earthquakes, investigating in particular whether there is relative quiescence prior to the quite big events within the Jiashi sequence. The seven earthquake sequences studied occurred in the region of Jiashi, south of Tianshan Mountain, Xinjiang, China. The particular ETAS model that is developed is consistent with the reality of seismic activity. The various features of Jiashi swarm activity can be described as focusing in different stages. There is obvious precursory quiescence prior to most big events with Ms ≥ 6.0 within the Jiashi swarm. Thus, checking for relative quiescence can be use for earthquake prediction.
The paper shows that the use of both types of random noise, white noise and Poisson noise, can be justified when using an innovations approach. The historical background for this is sketched, and then several methods of whitening dependent time series are outlined, including a mixture of Gaussian white noise and a compound Poisson process: this appears as a natural extension of the Gaussian white noise model for the prediction errors of a non-Gaussian time series. A statistical method for the identification of non-linear time series models with noise made up of a mixture of Gaussian white noise and a compound Poisson noise is presented. The method is applied to financial time series data (dollar-yen exchange rate data), and illustrated via six models.
For many years the modified Mercalli (MM) scale has been used to describe earthquake damage and effects observed at scattered locations. In the next stage of an analysis involving MM data, isoseismal lines based on the observations have been added to maps by hand, i.e. subjectively. However a few objective methods have been proposed (by e.g. De Rubeis et al., Brillinger, Wald et al. and Pettenati et al.). The work presented here develops objective methods further. In particular the ordinal character of the MM scale is specifically taken into account. Numerical smoothing is basic to the approach and methods involving splines, local polynomial regression and wavelets are illustrated. The approach also allows the inclusion of explanatory variables, for example site effects. The procedure is implemented for data from the 17 October 1989 Loma Prieta earthquake.
A time-series consisting of white noise plus Brownian motion sampled at equal intervals of time is exactly orthogonalized by a discrete cosine transform (DCT-II). This paper explores the properties of a version of spectral analysis based on the discrete cosine transform and its use in distinguishing between a stationary time-series and an integrated (unit root) time-series.