We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Prediction for autoregressive sequences with finite second moment and of general order is considered. It is shown that the best predictor with time reversed is linear if and only if the innovations are Gaussian. The connection to time reversibility is also discussed.
In this paper statistical properties of estimators of drift parameters for diffusion processes are studied by modern numerical methods for stochastic differential equations. This is a particularly useful method for discrete time samples, where estimators can be constructed by making discrete time approximations to the stochastic integrals appearing in the maximum likelihood estimators for continuously observed diffusions. A review is given of the necessary theory for parameter estimation for diffusion processes and for simulation of diffusion processes. Three examples are studied.
Families of Poisson processes defined on general state spaces and with the intensity measure scaled by a positive parameter are investigated. In particular, mean value relations with respect to the scale parameter are established and used to derive various Gamma-type results for certain geometric characteristics determined by finite subprocesses. In particular, we deduce Miles' complementary theorem. Applications of the results within stochastic geometry and particularly for random tessellations are discussed.
The problem addressed is to reverse the degradation which occurs when images are digitised: they are blurred, subjected to noise and rounding error, and sampled only at a lattice of points. Inference is considered for the fundamental case of binary scenes, binary data and isotropic blur. The inferential process is separable into two stages: first from the lattice points to a binary image in continuous space and then the reversal of thresholding and blur. Methods are motivated by, and illustrated using, an electron micrograph of an immunogold-labelled section of tulip virus.
A unified way of obtaining stationary time series models with the univariate margins in the convolution-closed infinitely divisible class is presented. Special cases include gamma, inverse Gaussian, Poisson, negative binomial, and generalized Poisson margins. ARMA time series models obtain in the special case of normal margins, sometimes in a different stochastic representation. For the gamma and Poisson margins, some previously defined time series models are included, but for the negative binomial margin, the time series models are different and, in several ways, better than previously defined time series models. The models are related to multivariate distributions that extend a univariate distribution in the convolution-closed infinitely divisible class. Extensions to the non-stationary case and possible applications to modelling longitudinal data are mentioned.
We show that a Poisson cluster point process is a nearest-neighbour Markov point process [2] if the clusters have uniformly bounded diameter. It is typically not a finite-range Markov point process in the sense of Ripley and Kelly [12]. Furthermore, when the parent Poisson process is replaced by a Markov or nearest-neighbour Markov point process, the resulting cluster process is also nearest-neighbour Markov, provided all clusters are non-empty. In particular, the nearest-neighbour Markov property is preserved when points of the process are independently randomly translated, but not when they are randomly thinned.
Markov chain processes are becoming increasingly popular as a means of modelling various phenomena in different disciplines. For example, a new approach to the investigation of the electrical activity of molecular structures known as ion channels is to analyse raw digitized current recordings using Markov chain models. An outstanding question which arises with the application of such models is how to determine the number of states required for the Markov chain to characterize the observed process. In this paper we derive a realization theorem showing that observations on a finite state Markov chain embedded in continuous noise can be synthesized as values obtained from an autoregressive moving-average data generating mechanism. We then use this realization result to motivate the construction of a procedure for identifying the state dimension of the hidden Markov chain. The identification technique is based on a new approach to the estimation of the order of an autoregressive moving-average process. Conditions for the method to produce strongly consistent estimates of the state dimension are given. The asymptotic distribution of the statistic underlying the identification process is also presented and shown to yield critical values commensurate with the requirements for strong consistency.
In the Bayesian estimation of higher-order Markov transition functions on finite state spaces, a prior distribution may assign positive probability to arbitrarily high orders. If there are n observations available, we show (for natural priors) that, with probability one, as n → ∞ the Bayesian posterior distribution ‘discriminates accurately' for orders up to β log n, if β is smaller than an explicitly determined β0. This means that the ‘large deviations' of the posterior are controlled by the relative entropies of the true transition function with respect to all others, much as the large deviations of the empirical distributions are governed by their relative entropies with respect to the true transition function. An example shows that the result can fail even for orders β log n if β is large.
A homogeneous Gaussian Markov lattice-process model has a regression coefficient that determines the extent to which a random variable of a vertex is dependent on those of the neighbors. In many studies, the absolute value of this parameter has been assumed to be less than the reciprocal of the number of neighbors. This condition is shown to be necessary and sufficient for the existence of the Gaussian process satisfying the model equations under some assumptions on lattices using the notion of dual processes. We also give examples of models that neither satisfy the condition imposed on the region for the parameter nor the assumptions on lattices. A formula for autocovariance functions of Gaussian Markov processes on general lattices is derived, and numerical procedures to calculate the autocovariance functions are proposed.
The corpuscle problem of Wicksell is discussed. We give a numerical quadrature of Gauss–Chebyshev type for Wicksell's integral equation which combines a size distribution of discs on a sectional plane with that of spheres. We also give an estimation procedure of three-dimensional size distributions based on this quadrature and examine its theoretical properties. In practice, we need a smoothing technique for empirical distribution functions before applying this estimator. Simulation results are given. Our idea also is applied to the thick section case and an analysis of microscopic data is given.
We use the fact that the Palm measure of a stationary random measure is invariant to phase space change to generalize the light traffic formula initially obtained for stationary processes on a line to general spaces. This formula gives a first-order expansion for the expectation of a functional of the random measure when its intensity vanishes. This generalization leads to new algorithms for estimating gradients of functionals of geometrical random processes.
A general method for solving stereological problems for particle systems is applied to polyhedron structures. We suggested computing the kernel function of the respective stereological integral equation by means of computer simulation. Two models of random polyhedrons are investigated. First, regular prisms are considered which are described by their size and shape. The size-shape distribution of a stationary and isotropic spatial ensemble of regular prisms can be estimated from the size-shape distribution of the polygons observed in a section plane. Secondly, random polyhedrons are constructed as the convex hull of points which are uniformly distributed on surfaces of spheres. It is assumed that the size of the polyhedrons and the number of points (i.e. the number of vertices) are random variables. Then the distribution of a spatially distributed ensemble of polyhedrons is determined by its size-number distribution. The corresponding numerical density of this bivariate size-number distribution can be stereologically determined from the estimated numerical density of the bivariate size-number distribution of the intersection profiles.
A biphase image, representing the normal and degenerated fibres in a vertical cross-section of a nerve, is considered. A random set model based on a Gibbs point process is proposed for the union of the two phases. A kind of independence between the degeneration process and the original fibres is defined and tested.
Quite often in the statistical analysis of medical and biological problems, data are images corresponding to entire objects that include smaller objects within them. In these cases, we need models of random closed sets (RACS) confined to compact subsets of the plane. There is no room for stationarity hypotheses and the increase of statistical information comes from independent replicates of the same phenomena rather than increasing our sample window. We investigate practical methods of modelling RACS by means of circumscribed balls, leading to a natural definition of location, size and shape. We discuss the possibilities of using these random variables in order to define statistical spaces of RACS that will allow us to use maximum likelihood methods.
Non-parametric estimators of the distribution of the grain of the Boolean model are considered. The technique is based on the study of point processes of tangent points in different directions related to the Boolean model. Their second- and higher-order characteristics are used to estimate the mean body and the distribution of the typical grain. Central limit theorems for the improved estimator of the intensity and surface measures of the Boolean model are also proved.
In this paper we extend the class of zero-order threshold autoregressive models to a much richer class of mixture models. The new class has the important property of duality which, as we show, corresponds to time reversal. We are then able to obtain the time reversals of the zero-order threshold models and to characterise the time-reversible members of this subclass. These turn out to be quite trivial. The time-reversible models of the more general class do not suffer in this way. The complete stationary distributional structure is given, as are various moments, in particular the autocovariance function. This is shown to be of ARMA type. Finally we give two examples, the second of which extends from the finite to the countable mixture case. The general theory for this extension will be given elsewhere.
A version of the Rao–Blackwell theorem is shown to apply to most, but not all, stereological sampling designs. Estimators based on random test grids typically have larger variance than quadrat estimators; random s-dimensional samples are worse than random r-dimensional samples for s < r. Furthermore, the standard stereological ratio estimators of different dimensions are canonically related to each other by the Rao–Blackwell process. However, there are realistic cases where sampling with a lower-dimensional probe increases efficiency. For example, estimators based on (conditionally) non-randomised test point grids may have smaller variance than quadrat estimators. Relative efficiency is related to issues in geostatistics and the theory of wide-sense stationary random fields. A uniform minimum variance unbiased estimator typically does not exist in our context.
Continuous-time threshold autoregressive (CTAR) processes have been developed in the past few years for modelling non-linear time series observed at irregular intervals. Several approximating processes are given here which are useful for simulation and inference. Each of the approximating processes implicitly defines conditions on the thresholds, thus providing greater understanding of the way in which boundary conditions arise.
Learning from Matheron's representation (1973), and using the increment vector (PIV) methodology introduced by Cressie (1988) and developed by Chen and Anderson (1994), this paper presents a theory for the representation and decomposition of integrated stationary time series and gives some applications.
A generalization of the notion of a stationary Markov chain in more than one dimension is proposed, and is found to be a special class of homogeneous Markov random fields. Stationary Markov chains in many dimensions are shown to possess a maximum entropy property, analogous to the corresponding property for Markov chains in one dimension. In addition, a representation of Markov chains in many dimensions is provided, together with a method for their generation that converges to their stationary distribution.