To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We present new orbital solutions for 15 binaries, which were astrometrically measured by our team during 2010–2013, using the FastCam ‘lucky-imaging’ camera installed at the 1.5-m Carlos Sánchez Telescope (CST) at the Observatorio del Teide, Tenerife (Spain). We present first orbital solutions for BU 1292, STF 147, HDS 1898, and STT 325 and revise orbital solutions for AG 14, D 5 AB, A 1581, HO 525 AB, WOR 19, A 1999, HU 572, HU 742, COU 227, BU 696 AB, and A 893. We apply two orbital calculation techniques, the ‘three-dimensional grid search method’, first described by Hartkopf, McAlister, & Franz (1989), and the Docobo’s analytical method (Docobo 1985). We use our tool ‘Binary Deblending’, based on deblending the entire observed multiband photometry into fundamental and photometric parameters for each stellar component based on PARSEC isochrones. We also obatain the total mass for all systems. Our findings include the identification of a binary system consisting of two M-type dwarfs (WOR 19), a binary of evolved components (twin F6IV-V stars) in BU 1292, accompanied by a newly discovered wide (10.5") and faint companion with G = 17.05 mag. Additionally, we explore the X-ray emission system STF 147 and a very young quadruple system, WDS 04573+5345. This comprehensive analysis significantly contributes to our understanding of the formation and evolution of stellar systems.
We are showing a significant enhancement in the temporal contrast by reducing the coherent noise of the 10 PW laser system at the Extreme Light Infrastructure - Nuclear Physics facility. The temporal contrast was improved by four orders of magnitude at 10 picoseconds and by more than one order of magnitude at 50 picoseconds before the main peak. This improvement of the picosecond contrast is critical for the experiments using thin solid targets.
Nonlinear hydroelastic waves along a compressed ice sheet lying on top of a two-dimensional fluid of infinite depth are investigated. Based on a Hamiltonian formulation of this problem and by applying techniques from Hamiltonian perturbation theory, a Hamiltonian Dysthe equation is derived for the slowly varying envelope of modulated wavetrains. This derivation is further complicated here by the presence of cubic resonances for which a detailed analysis is given. A Birkhoff normal form transformation is introduced to eliminate non-resonant triads while accommodating resonant ones. It also provides a non-perturbative scheme to reconstruct the ice-sheet deformation from the wave envelope. Linear predictions on the modulational instability of Stokes waves in sea ice are established, and implications for the existence of solitary wave packets are discussed for a range of values of ice compression relative to ice bending. This Dysthe equation is solved numerically to test these predictions. Its numerical solutions are compared with direct simulations of the full Euler system, and very good agreement is observed.
We study the formation of dust-free regions above hot horizontal surfaces of uniform temperature and propose relations for its height in the limit of small particle inertia and gravitational effects. By including particle inertia, thermophoretic, gravitational and viscous effects, we conduct Lagrangian simulations of particle dynamics in a natural convection boundary layer over a horizontal surface. Trajectory analysis of the particles inside the boundary layer on the surface reveals the existence of two separatrices originating from a saddle point, which form the boundary of the dust-free region. These separatrices for low gravitational effects follow the boundary layer thickness, but are of much lower height and also depend on the dimensionless thermophoretic number ($Th$) and Prandtl number ($Pr$). We obtain a relation for the dimensionless height of the dust-free region ($\eta _{df}$) as a function of $Pr$ and $Th$, for low dimensionless gravitational number ($Gn$); the numerical solution of this equation gives us the dust-free region height for any $Th$ and $Pr$. We then obtain scaling laws for $\eta _{df}$ using the boundary layer equations corresponding to the $Pr \gg 1$ and $Pr \ll 1$ cases; these scaling laws are shown to be valid respectively for $Pr>1$ and $Pr<1$, except in the large $\eta$ limit for $Pr>1$, where $\eta$ is the boundary layer similarity variable. We then obtain an empirical relation in this large $\eta$ limit using the numerical solutions of the boundary layer equations for the intermediate $Pr$ case to obtain scaling laws for dust-free region height for the whole range of $Pr \ll 1$ to $Pr \gg 1$.
The emerging era of big data in radio astronomy demands more efficient and higher-quality processing of observational data. While deep learning methods have been applied to tasks such as automatic radio frequency interference (RFI) detection, these methods often face limitations, including dependence on training data and poor generalisation, which are also common issues in other deep learning applications within astronomy. In this study, we investigate the use of the open-source image recognition and segmentation model, Segment Anything Model (SAM), and its optimised version, HQ-SAM, due to their impressive generalisation capabilities. We evaluate these models across various tasks, including RFI detection and solar radio burst (SRB) identification. For RFI detection, HQ-SAM (SAM) shows performance that is comparable to or even superior to the SumThreshold method, especially with large-area broadband RFI data. In the search for SRBs, HQ-SAM demonstrates strong recognition abilities for Type II and Type III bursts. Overall, with its impressive generalisation capability, SAM (HQ-SAM) can be a promising candidate for further optimisation and application in RFI and event detection tasks in radio astronomy.
In this paper, we prove that the third near-infrared (NIR-III) window high-power laser with wavelength in the range of 1600–1800 nm can be obtained by the coherent Raman fiber amplification technique through theoretical and experimental study. Detailed numerical simulation reveals that the nonlinear dynamics of the Raman fiber amplification in the polarization-maintaining double-clad erbium-ytterbium co-doped fiber is similar to that of the Mamyshev oscillator. Through the spectral filtering effect induced by finite Raman gain, we can obtain a high-quality Raman pulse. According to the theoretical results, we design a simple Raman fiber amplification laser and finally obtain a high-quality watt-level NIR-III window laser pulse in which the central wavelength is about 1650 nm and the pulse width can reach 85 fs. The experimental results correspond to the simulation results. Such nonlinear effect is universal in all kinds of fibers, and we think this technology can provide a great contribution to the development of ultrafast fiber lasers.
Since August 2014, a monitoring survey at a frequency of 111 MHz has been conducted on the Large Phased Array (LPA) radio telescope of the P.N. Lebedev Physical Institute (LPI). We report the discovery of a bright pulse having a dispersion measure (DM) equal to $134.4\pm2\ \text{pc cm}^{-3}$, a peak flux density ($S_p$) equal to $20\pm4$ Jy, and a half-width ($W_e$) equal to $211\pm6$ ms. The excessive DM of the pulse, after taking into account the Milky Way contribution, is $114\ \text{pc cm}^{-3}$ that indicates its extragalactic origin. Such value of DM corresponds to the luminosity distance 713 Mpc. The above parameters make the pulse to be a reliable candidate to the fast radio burst (FRB) event, and then it is the second FRB detected at such a large $\lambda\sim2.7$ m wavelength and the first one among non-repeating FRBs. The normalised luminosity $L_\nu$ of the event, which we have designated as FRB 20190203, estimated under assumption that the whole excessive DM is determined by the intergalactic environment towards the host galaxy, is equal to $\simeq 10^{34}\ \text{erg s}^{-1} \text{Hz}^{-1}$. In addition to the study of radio data we analysed data from the quasi-simultaneous observations of the sky in the high energy ($\geq 80$ keV) band by the omnidirectional detector SPI/ACS aboard the INTEGRAL orbital observatory (in order to look for a possible gamma-ray counterpart of FRB 20190203). We did not detect any transient events exceeding the background at a statistically significant level. In the INTEGRAL archive, the FRB 20190203 localisation region has been observed many times with a total exposure of $\sim 73.2$ days. We have analysed the data but were unable to find any reliable short gamma-ray bursts from the FRB 20190203 position. Finally, we note that the observed properties of FRB 20190203 can be reproduced well in the framework of a maser synchrotron model operating in the far reverse shock (at a distance of $\sim 10^{15}$ cm) of a magnetar. However, triggering the burst requires a high conversion efficiency (at the level of 1%) of the shock wave energy into the radio emission.
We study linear convective instability in a mushy layer formed by solidification of a binary alloy, cooled by either an isothermal perfectly conducting boundary or an imperfectly conducting boundary where the surface temperature depends linearly on the surface heat flux. A companion paper (Hitchen & Wells, J. Fluid Mech., 2025, in press) showed how thermal and salinity conditions impact mush structure. We here quantify the impact on convective instability, described by a Rayleigh number characterising the ratio of buoyancy to dissipative mechanisms. Two limits emerge for a perfectly conducting boundary. When the salinity-dependent freezing-point depression is large versus the temperature difference across the mush, convection penetrates throughout the depth of a high-porosity mush. The other limit, which we will call the Stefan limit, has small freezing-point depression and inhibits convection, which localises at onset to a high-porosity boundary layer near the mush–liquid interface. Scaling arguments characterise variation of the critical Rayleigh number and wavenumber based on the potential energy contained in order-one aspect ratio convective cells over the high-porosity regions. The Stefan number characterises the ratio of latent and sensible heats, and has moderate impact on stability via modification of the background temperature and porosity. For imperfectly conducting boundaries, the changing surface temperature causes stability to decrease over time in the limit of large freezing-point depression, but in the Stefan limit combines with the decreasing porosity to yield non-monotonic variation of the critical Rayleigh number. We discuss the implications for convection in growing sea ice.
This paper presents a theoretical model of plasma equilibrium in the diamagnetic confinement mode in an axisymmetric mirror device with neutral beam injection. The hot ionic component is described within the framework of the kinetic theory, since the Larmor radius of the injected ions appears to be comparable to or even larger than the characteristic scale of the magnetic field inhomogeneity. The electron drag of the hot ions is taken into account, while the angular scattering of the hot ions due to Coulomb collisions is neglected. The background warm plasma, on the contrary, is considered to be in local thermal equilibrium, i.e. has a Maxwellian distribution function and is described in terms of magnetohydrodynamics. The density of the hot ions is assumed to be negligible compared with that of the warm plasma. Both the conventional gas-dynamic loss and the non-adiabatic loss specific to the diamagnetic confinement mode are taken into account. In this work, we do not consider the effects of the warm plasma rotation as well as the inhomogeneity of the electrostatic potential. A self-consistent theoretical model of the plasma equilibrium is constructed. In the case of the cylindrical bubble, this model is reduced to a simpler one. The numerical solutions in the limit of a thin transition layer of the diamagnetic bubble are found. Examples of the equilibria corresponding to the gas-dynamic multiple-mirror trap device are considered.
We investigate the spreading of falling ambient-temperature Newtonian drops after their normal impact on a quartz plate covered with a thin layer of liquid nitrogen. As a drop expands, liquid nitrogen evaporates, generating a vapour film that maintains the drop in levitation. Consequently, the latter spreads in inverse Leidenfrost conditions. Three drop-spreading regimes are observed: (i) inertio-capillary, (ii) inertio-viscous, and (iii) inertio-viscous-capillary. In the first regime, although the drop expansion is essentially driven by a competition between inertial and capillary stresses, it is also affected by viscous effects emerging from the vapour film, which ultimately favours the development of a shear flow within the drop. Interestingly, vapour film effects become marginal in both the second and third regimes, allowing the drop to undergo biaxial extension primarily. More specifically, in the inertio-viscous scenario, the expansion is driven by the balance between inertial and biaxial extensional viscous stresses in the drop. Finally, inertia, capillarity and drop viscosity are all relevant in the third regime. These physical mechanisms are underlined through a mixed approach combining experiments with multiphase three-dimensional numerical simulations in light of spreading dynamics analyses, energy transfer and scaling laws. Our results are rationalized in a two-dimensional diagram linking the drops’ maximum expansion and spreading time with the observed spreading regimes through a single dimensionless parameter given by the square root of the capillary number (the ratio of the viscous stress to the capillary stress).
An ionized gas medium (plasma state) turns to a complex state of plasma or dusty plasma if micrometre- to submicrometre-sized solid dust particles are introduced in it. The dusty plasma medium exhibits fluid- as well as solid-like characteristics at different background plasma conditions. It supports various linear and nonlinear dynamical structures because of external perturbation and internal instabilities. The vortical or coherent structure in the dusty plasma medium is a kind of self-sustained dynamical structure that is formed either by instabilities or by external forcing. In this review article, the author discusses the past theoretical, experimental and computational investigations on vortical and coherent structures in unmagnetized and magnetized dusty plasmas. The possible mechanisms of the formation of vortices in a dust-grain medium are discussed in detail. The studies on the evolution of vortices and their correlation with turbulence are also reviewed.
This study investigates the impact of local thermal non-equilibrium on the stability analysis of partially ionized plasma within a porous medium. The plasma, heated from below, is enclosed by various combinations of bounding surfaces. Both nonlinear (via the energy method) and linear (utilizing the normal mode analysis method) analyses are performed. Eigenvalue problems for both analyses are formulated and solved using the Galerkin method. The study also explores the effects of compressibility, medium permeability and magnetic fields on system stability. The collisional frequency among plasma components and the thermal diffusivity ratio significantly influence energy decay. The results reveal that the Rayleigh–Darcy number is identical for both nonlinear and linear analyses, thus eliminating the possibility of a subcritical region and confirming global stability. The principle of exchange of stabilities is validated, indicating the absence of oscillatory convection modes. Medium permeability, heat-transfer coefficient and compressibility delay the onset of convection, demonstrating stabilizing effects. Conversely, the porosity-modified conductivity ratio hastens the convection process, indicating destabilizing effects. Rigid–rigid bounding surfaces are found to be thermally more stable for confining the partially ionized plasma. Additionally, the magnetic field exerts a stabilizing influence.
Kinetic theory of particles near resonances is a current topic of discussion in plasma physics and astrophysics. We extend this discussion to the kinetic theory of the interaction between alpha particles (energetic particles predicted to exist in large quantities in next-generation fusion experiments) and a neoclassical tearing mode (NTM), a resistively-driven perturbation which sometimes exists in a tokamak. We develop a quasilinear treatment of the interaction between alpha particles and an NTM, showing why an NTM can be a source of significant passing alpha particle transport in tokamaks. The limitations on quasilinear theory constrain our theory's applicability to small amplitude NTMs, highlighting the importance of nonlinear studies.
The effect of geometric twist ($\delta$) of a finite wing of various semi-aspect ratios, on the flow, aerodynamic forces and strength of wing-tip vortex, is investigated. The number of vortex shedding cells increases with increase in $\delta$. In general, the vortex shedding frequency at the root and tip of the wing is approximately the same as that for an untwisted wing. However, close to the $\delta$, where the number of cells changes, the end-cell frequency of the twisted wing undergoes a departure from the value for the untwisted wing. Dislocations at the junction of neighbouring cells are of fork-type for $\delta > -2^\circ$ and of reverse fork-type for $\delta < -2^\circ$. Additional ring-like vortex structures are observed for $\delta =-4^\circ$. Despite a significant effect of the twist on the flow and spanwise variation of the local force coefficients, low to moderate twist of the wing has a relatively minor effect on the span-integrated force coefficients. Larger positive $\delta$, however, results in a significant decrease in the time-averaged force coefficients and rolling moment at the wing root, their unsteadiness and an increase in the strength of the wing-tip vortex. Twist can be utilized as a design parameter for an air vehicle operating at low Reynolds number. Positive twist results in a decrease in unsteadiness in the flow and lower rolling moment at the wing root that can enable lowering the structural weight. Negative twist, on the other hand, weakens the wing-tip vortices that assists in formation and swarm flying by causing lower disturbance to downstream air vehicles.
It is common wisdom that collisionless shocks become non-planar and non-stationary at sufficiently high Mach numbers. Whatever the shock structure, the upstream and downstream fluxes of the mass, momentum and energy should be equal. At low Mach numbers, these conservation laws are satisfied when the shock front is planar and stationary. When this becomes impossible, inhomogeneity and time dependence, presumably in the form of rippling, develop. In this study, we show that the shock structure changes as a kind of ‘phase transition’ when the Mach number is increased while other shock parameters are kept constant.
Adverse pressure gradient (APG) turbulent boundary layers (TBL) require an understanding of the details of the pressure gradient, or history effect, to characterize the associated variation of spatiotemporal turbulent statistics. The streamwise-varying mean pressure gradient is reflected in the streamwise developing mean flow field and thus resolvent analysis, which captures the amplification of the Navier–Stokes equations linearized about the turbulent mean, can be used to understand linear amplification in APG TBLs. In particular, by using a biglobal approach in which the amplification is characterized by a temporal frequency and spanwise wavenumber, the streamwise and wall-normal inhomogeneities of the APG TBL can be resolved and related to the APG history. The linear response is able to identify multiscale phenomena, identifying a near-wall peak with $\lambda _{z}^+\approx 100$ for zero pressure gradient TBLs and mild to moderate APG TBLs as well as large-scale modes whose amplification increases with APG strength and Reynolds number. It is shown that the monotonic growth in the turbulent statistics with increasing APG is reflected in the linear growth in the associated resolvent amplification. Collapse in the Reynolds stresses is obtained through an augmented hybrid velocity scale, which replaces the local APG strength measure in the hybrid velocity scale presented in Romero et al. (Intl J. Heat Fluid Flow, vol. 93, 2022, 108885) with a velocity that encapsulates the pressure gradient history. While this resolvent approach is applicable to any APG TBL, it is shown from a scaling analysis of the linearized Navier–Stokes equations that the linear growth observed in the resolvent amplification with the history effect is limited to near-equilibrium APG TBLs.
For the pulse shaping system of the SG-II-up facility, we propose a U-shaped convolutional neural network that integrates multi-scale feature extraction capabilities, an attention mechanism and long short-term memory units, which effectively facilitates real-time denoising of diverse shaping pulses. We train the model using simulated datasets and evaluate it on both the simulated and experimental temporal waveforms. During the evaluation of simulated waveforms, we achieve high-precision denoising, resulting in great performance for temporal waveforms with frequency modulation-to-amplitude modulation conversion (FM-to-AM) exceeding 50%, exceedingly high contrast of over 300:1 and multi-step structures. The errors are less than 1% for both root mean square error and contrast, and there is a remarkable improvement in the signal-to-noise ratio by over 50%. During the evaluation of experimental waveforms, the model can obtain different denoised waveforms with contrast greater than 200:1. The stability of the model is verified using temporal waveforms with identical pulse widths and contrast, ensuring that while achieving smooth temporal profiles, the intricate details of the signals are preserved. The results demonstrate that the denoising model, trained utilizing the simulation dataset, is capable of efficiently processing complex temporal waveforms in real-time for experiments and mitigating the influence of electronic noise and FM-to-AM on the time–power curve.
Turbulent boundary layers on immersed objects can be significantly altered by the pressure gradients imposed by the flow outside the boundary layer. The interaction of turbulence and pressure gradients can lead to complex phenomena such as relaminarization, history effects and flow separation. The angular momentum integral (AMI) equation (Elnahhas & Johnson, J. Fluid Mech., vol. 940, 2022, A36) is extended and applied to high-fidelity simulation datasets of non-zero pressure gradient turbulent boundary layers. The AMI equation provides an exact mathematical equation for quantifying how turbulence, free-stream pressure gradients and other effects alter the skin friction coefficient relative to a baseline laminar boundary layer solution. The datasets explored include flat-plate boundary layers with nearly constant adverse pressure gradients, a boundary layer over the suction surface of a two-dimensional NACA 4412 airfoil and flow over a two-dimensional Gaussian bump. Application of the AMI equation to these datasets maps out the similarities and differences in how boundary layers interact with favourable and adverse pressure gradients in various scenarios. Further, the fractional contribution of the pressure gradient to skin friction attenuation in adverse-pressure-gradient boundary layers appears in the AMI equation as a new Clauser-like parameter with some advantages for understanding similarities and differences related to upstream history effects. The results highlight the applicability of the integral-based analysis to provide quantitative, interpretable assessments of complex boundary layer physics.
External seeded free-electron lasers (FELs) have exhibited substantial progress in diverse applications over the last decade. However, the frequency up-conversion efficiency in single-stage seeded FELs, particularly in high-gain harmonic generation (HGHG), remains constrained to a modest level. This limitation restricts its capability to conduct experiments within the ‘water window’. This paper presents a novel method for generating coherent X-ray FEL pulses in the water window region based on the HGHG scheme with multi-stage harmonic cascade. Without any additional modifications to the HGHG configuration, simulation results demonstrate the generation of intense 3 nm coherent FEL radiation using an external ultraviolet seed laser. This indicates an increase of the harmonic conversion number to approximately 90. A preliminary experiment is performed to evaluate the feasibility of this method. The proposed approach could potentially serve as an efficient method to broaden the wavelength coverage accessible to both existing and planned seeded X-ray FEL facilities.