To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We undertake an experimental investigation into the instabilities that emerge when a shear-thinning fluid intrudes a less viscous Newtonian fluid axisymmetrically in a lubricated Hele-Shaw cell. Pre-formed lubrication layers of Newtonian fluid that separate the shear-thinning fluid from the cell walls are incorporated into the experimental design. Provided the lubrication layers remain effective at reducing shear stress, so that extensional stresses dominate the flow of the intruding fluid, the instabilities evolve to form branch-like structures, which exhibit fracturing or tearing behaviour at their troughs. Thicker lubrication layers enable the branches to propagate radially outwards, whilst thinner, less effective ones hinder their development and progression. In the absence of lubrication layers, the shear-thinning fluid spreads radially and remains axisymmetric. For lubricated flows, we show that the number of branches is dependent primarily on the strain rate at the radial distance where they first emerge, and that the number of branches decreases with increasing strain rate.
The manipulation of the Richtmyer–Meshkov instability growth at a heavy–light interface via successive shocks is theoretically analysed and experimentally realized in a specific shock-tube facility. An analytical model is developed to forecast the interface evolution before and after the second shock impact, and the possibilities for the amplitude evolution pattern are systematically discussed. Based on the model, the parameter conditions for each scenario are designed, and all possibilities are experimentally realized by altering the time interval between two shock impacts. These findings may enhance the understanding of how successive shocks influence hydrodynamic instabilities in practical applications.
The electron cryomicroscopy (cryo-EM) resolution revolution has shifted structural biology into a new era, enabling the routine structure determination of macromolecular complexes at an unprecedented rate. Building on this, electron cryotomography (cryo-ET) offers the potential to visualise the native three-dimensional organisation of biological specimens, from cells to tissues and even entire organisms. Despite this huge potential, the study of tissue-like multicellular specimens via cryo-ET still presents numerous challenges, wherein many steps in the workflow are being developed or in urgent need of improvement. In this review, we outline the latest techniques currently utilised for in situ imaging of multicellular specimens, while clearly enumerating their associated limitations. We consider every step in typical workflows employed by various laboratories, including sample preparation, data collection and image analysis, to highlight recent progress and showcase prominent success stories. By considering the entire structural biology workflow for multicellular specimens, we identify which future exciting developments in hardware and software could enable comprehensive in situ structural biology investigations, bringing forth a new age of discovery in molecular structural and cell biology.
Mangroves are a natural defence of the coastal strip against extreme waves. Furthermore, innovative techniques of naturally based coast defence are used increasingly, according to the canons of eco-hydraulics. Therefore, it is important to correctly evaluate the transmission of waves through cylinder arrays. In the present paper, the attenuation of solitary waves propagating through an array of rigid emergent and submerged cylindrical stems on a horizontal bottom is investigated theoretically, numerically and experimentally. The results of the theoretical model are compared with the numerical simulations obtained with the smoothed particle hydrodynamics meshless Lagrangian numerical code and with experimental laboratory data. In the latter case, solitary waves were tested on a background current, in order to reproduce more realistic sea conditions, since the absence of circulation currents is very rare in the sea. The comparison confirmed the validity of the theoretical model, allowing its use for the purposes indicated above. Furthermore, the present study allowed for an evaluation of the bulk drag coefficient of the rigid stem arrays used, as a function of their density, the stem diameter, and their submergence ratio.
Numerical simulations are conducted to investigate particle suspension and deposition within turbidity currents. Utilizing Lagrangian particle tracking and a discrete element model, our numerical approach enables a detailed examination of autosuspension, deposition and bulk behaviours of turbidity current. We specifically focus on flow regimes where particle settling and buoyancy-induced hydrodynamics play equally important roles. Our discussion is divided into three parts. Firstly, we examine the main body of the current formed by suspended particles, revealing a temporal evolution consisting of initial slumping, propagation and dissipation stages. Our particle calculation allows for the tracking of autosuspended particles, enabling a deeper understanding of the connection between autosuspension and current propagation through energy budget analysis. In the second part, we delve into particle deposition, highlighting transverse and longitudinal variations. Transverse variations arise from lobe-and-cleft (LC) flow features, while longitudinal variations result from vortex detachment, particularly notable with large-sized particles. We observe that as particle size increases, leading to a particle Stokes number greater than 0.1, rapid particle settling suppresses the LC flow structure, resulting in wider lobes at the deposition height. Lastly, we propose a new scaling law for the propagation speed and current length. Our simulation results demonstrate close agreement with this new scaling law, providing valuable insights into turbidity current dynamics.
The collapse of an initially spherical cavitation bubble near a free surface leads to the formation of two jets: a downward jet into the liquid, and an upward jet penetrating the free surface. In this study, we examine the surprising interaction of a bubble trapped in a stable cavitating vortex ring approaching a free surface. As a result, a single fast and tall liquid jet forms. We find that this jet is observed only above critical Froude numbers ($Fr$) and Weber numbers ($We$) when ${Fr}^2 (1.6-2.73/{We}) > 1$, illustrating the importance of inertia, gravity and surface tension in accelerating this novel jet and thereby reaching heights several hundred times the radius of the vortex ring. Our experimental results are supported by numerical simulations, revealing that the underlying mechanism driving the vortex ring acceleration is the disruption of the equilibrium of high-pressure regions at the front and rear of the vortex ring caused by the free surface. Quantitative analysis based on the energy relationships elucidates that the velocity ratio between the maximum velocity of the free-surface jet and the translational velocity of the vortex ring is relatively stable yet is attenuated by surface tension when the jet is mild.
Laser-driven inertial confinement fusion (ICF) diagnostics play a crucial role in understanding the complex physical processes governing ICF and enabling ignition. During the ICF process, the interaction between the high-power laser and ablation material leads to the formation of a plasma critical surface, which reflects a significant portion of the driving laser, reducing the efficiency of laser energy conversion into implosive kinetic energy. Effective diagnostic methods for the critical surface remain elusive. In this work, we propose a novel optical diagnostic approach to investigate the plasma critical surface. This method has been experimentally validated, providing new insights into the critical surface morphology and dynamics. This advancement represents a significant step forward in ICF diagnostic capabilities, with the potential to inform strategies for enhancing the uniformity of the driving laser and target surface, ultimately improving the efficiency of converting laser energy into implosion kinetic energy and enabling ignition.
Isolated, undamped geodesic-acoustic-mode (GAM) packets have been demonstrated to obey a (focusing) nonlinear Schrödinger equation (NLSE) (E. Poli, Phys. Plasmas, 2021). This equation predicts susceptibility of GAM packets to the modulational instability (MI). The necessary conditions for this instability are analysed analytically and numerically using the NLSE model. The predictions of the NLSE are compared with gyrokinetic simulations performed with the global particle-in-cell code ORB5, where GAM packets are created from initial perturbations of the axisymmetric radial electric field $E_r$. An instability of the GAM packets with respect to modulations is observed both in cases in which an initial perturbation is imposed and when the instability develops spontaneously. However, significant differences in the dynamics of the small scales are discerned between the NLSE and gyrokinetic simulations. These discrepancies are mainly due to the radial dependence of the strength of the nonlinear term, which we do not retain in the solution of the NLSE, and to the damping of higher radial spectral components $k_r$. The damping of the high-$k_r$ components, which develop as a consequence of the nonlinearity, can be understood in terms of Landau damping. The influence of the ion Larmor radius $\rho _i$ as well as the perturbation wavevector $k_\text {pert}$ on this effect is studied. For the parameters considered here the aforementioned damping mechanism hinders the MI process significantly from developing to its full extent and is strong enough to stabilize some of the (according to the undamped NLSE model) unstable wavevectors.
We investigate the drag reduction effect of the streamwise travelling wave-like wall deformation in a high-Reynolds-number turbulent channel flow by large-eddy simulation (LES). First, we assess the validity of subgrid-scale models in uncontrolled and controlled flows. For friction Reynolds numbers $Re_\tau = 360$ and $720$, the Smagorinsky and wall-adapting local eddy-viscosity (WALE) models with a damping function can reproduce well the mean velocity profile obtained by direct numerical simulation (DNS) in both the uncontrolled and controlled flows, leading to a small difference in drag reduction rate between LES and DNS. The LES with finer grid resolution can reproduce well the key structures observed in the DNS of the controlled flow. These results show that the high-fidelity LES is valid for appropriately predicting the drag reduction effect. In addition, a small computational domain is sufficient for reproducing the turbulence statistics, key structures and drag reduction rate obtained by DNS. Subsequently, to investigate the trend of drag reduction rate at higher Reynolds numbers, we utilize the WALE model with the damping function to investigate the control effect at higher Reynolds numbers up to $Re_\tau = 3240$. According to the analyses of turbulence statistics and instantaneous flow fields, the drag reduction at higher Reynolds numbers occurs basically through the same mechanism as that at lower Reynolds numbers. In addition, the drag reduction rate obtained by the present LES approaches that predicted using the semi-empirical formula (Nabae et al., Intl J. Heat Fluid Flow, vol. 82, 2020, 108550) as the friction Reynolds number increases, which supports the high predictability of the semi-empirical formula at significantly high Reynolds numbers.
Ekman pumping is a phenomenon induced by no-slip boundary conditions in rotating fluids. In the context of Rayleigh–Bénard convection, Ekman pumping causes a significant change in the linear stability of the system compared with when it is not present (that is, stress-free). Motivated by numerical solutions to the marginal stability problem of the incompressible Navier–Stokes equation (iNSE) system, we seek analytical asymptotic solutions which describe the departure of the no-slip solution from the stress-free one. The substitution of normal modes into a reduced asymptotic model yields a linear system for which we explore analytical solutions for various scalings of wavenumber. We find very good agreement between the analytical asymptotic solutions and the numerical solutions to the iNSE linear stability problem with no-slip boundary conditions.
Upper bounds on the growth of instabilities in gyrokinetic systems have recently been derived by considering the optimal perturbations that maximise the growth of a chosen energy norm. This technique has previously been applied to two-species gyrokinetic systems with fully kinetic ions and electrons. However, in tokamaks and stellarators, the expectation from linear instability analyses is that the most important kinetic electron contribution to ion-scale modes often comes from the trapped electrons, which bounce faster than the time scale upon which instabilities evolve. As a result, a fully kinetic electron response is not required to describe unstable modes in many cases. Here, we apply the optimal mode analysis to a reduced two-species system consisting of fully gyrokinetic ions and bounce-averaged electrons, with the aim of finding a tighter bound on ion-scale instabilities in toroidal geometry. This analysis yields bounds that are greatly reduced in comparison with the earlier two-species result. Moreover, if the energy norm is properly chosen, wave–particle resonance effects can be captured, reproducing the stabilisation of density-gradient-driven instabilities in maximum-$J$ devices. The optimal mode analysis also reveals that the maximum-$J$ property has an additional stabilising effect on ion-temperature-gradient-driven instabilities, even in the absence of an electron free energy source. This effect is explained in terms of the concept of mode inertia, making it distinct from other mechanisms.
This book explores the fractionalization of particles in physics, how interactions between individual particles and with their background can modify their fundamental quantum states. Covering a large breadth of topics with an example-driven approach, this comprehensive text explains why phases of matter must be described in terms of both symmetries and their topology. The majority of important results are derived in full with explanations provided, while exercises at the end of each section allow readers to extend and develop their understanding of key topics. The first part presents polyacetylene as the paradigmatic material in which electric charge can be fractionalized, while the second part introduces the notion of invertible topological phases of matter. The final part is devoted to the 'ten-fold way', a classification of topological insulators or superconductors. The text requires a solid understanding of quantum mechanics and is a valuable resource for graduate students and researchers in physics.
The transformation of internal waves on a stepwise underwater obstacle is studied in the linear approximation. The transmission and reflection coefficients are derived for a two-layer fluid. The results are obtained and presented as functions of incident wave wavenumber, density ratio of layers, pycnocline position, and height of the bottom step. Excitation coefficients of evanescent modes are also calculated, and their importance is demonstrated. This allows one to estimate the number of evanescent modes necessary to take into account to attain the required accuracy for the transformation coefficients.
When atmospheric storms pass over the ocean, they resonantly force near-inertial waves (NIWs), internal waves with a frequency close to the local Coriolis frequency $f$. It has long been recognised that the evolution of NIWs is modulated by the ocean's mesoscale eddy field. This can result in NIWs being concentrated into anticyclones which provide an efficient pathway for NIW propagation to depth. Here we analyse the eigenmodes of NIWs in the presence of mesoscale eddies and heavily draw on parallels with quantum mechanics. Whether the eddies are effective at modulating the behaviour of NIWs depends on the wave dispersiveness $\varepsilon ^2 = f\lambda ^2/\varPsi$, where $\lambda$ is the deformation radius and $\varPsi$ is a scaling for the eddy streamfunction. If $\varepsilon \gg 1$, NIWs are strongly dispersive, and the waves are only weakly affected by the eddies. We calculate the perturbations away from a uniform wave field and the frequency shift away from $f$. If $\varepsilon \ll 1$, NIWs are weakly dispersive, and the wave evolution is strongly modulated by the eddy field. In this weakly dispersive limit, the Wentzel–Kramers–Brillouin approximation, from which ray tracing emerges, is a valid description of the NIW evolution even if the large-scale atmospheric forcing apparently violates the requisite assumption of a scale separation between the waves and the eddies. The large-scale forcing excites many wave modes, each of which varies on a short spatial scale and is amenable to asymptotic analysis analogous to the semi-classical analysis of quantum systems. The strong modulation of weakly dispersive NIWs by eddies has the potential to modulate the energy input into NIWs from the wind, but we find that this effect should be small under oceanic conditions.
We investigate experimentally the planar paths displayed by cylinders falling freely in a thin-gap cell containing liquid at rest, by varying the elongation ratio and the Archimedes number of the cylinders, and the solid-to-fluid density ratio. In the investigated conditions, the oscillatory falling motion features two main characteristics: the mean fall velocity $\overline {u_v}$ does not scale with the gravitational velocity, which overestimates $\overline {u_v}$ and is unable to capture the influence of the density ratio on it; and high-amplitude oscillations of the order of $\overline {u_v}$ are observed for both translational and rotational velocities. To model the body behaviour, we propose a force balance, including proper and added inertia terms, the buoyancy force and vortical contributions accounting for the production of vorticity at the body surface and its interaction with the cell walls. Averaging the equations over a temporal period provides a mean force balance that governs the mean fall velocity of the cylinder, revealing that the coupling between the translational and rotational velocity components induces a mean upward inertial force responsible for the decrease of $\overline {u_v}$. This mean force balance also provides a normalization for the frequency of oscillation of the cylinder in agreement with experimental measurements. We then consider the instantaneous force balance experienced by the body, and propose three contributions for the modelling of the vortical force. These can be interpreted as drag, lift and history forces, and their dependence on the control parameters is adjusted on the basis of the experimental measurements.
The added mass force resulting from the acceleration of a body in a fluid is of fundamental and practical interest in dispersed multiphase flows. Euler–Lagrange (EL) and Euler–Euler (EE) simulations require closure terms for the added mass force in order to accurately couple the conserved variables between phases. Presently, a more thorough understanding of the added mass force in a multi-particle system is developed based on potential flow resulting in a resistance matrix formulation analogous to Stokesian dynamics. This formulation is then used to generate a dataset of added mass resistance matrices for large systems of randomly generated particles. This methodology is used to create a volume fraction corrected binary model for predicting the added mass force in large systems as well as generate statistics of the added mass force in such systems. This work provides clarification to the theory of the added mass force for particle clouds, and modelling options that may be implemented in existing EL and EE codes.
We present the first experimental observations of the dust acoustic wave where the wave was observed to propagate in the directions of gravity and magnetic field when these directions were not aligned. The experiments were conducted in the Magnetized Dusty Plasma eXperiment facility using a novel electrode system that allows for the angle between gravity and the magnetic field to be varied in a controlled way. This letter reports on measurements in an rf glow discharge argon plasma environment where the angle between direction of gravity and the magnetic field is 45$^{\circ }$. When there was no applied magnetic field, the wave was observed to propagate in the direction of gravity. However, as the magnetic field increased and the ions transitioned from flowing in the direction of gravity to the direction of the magnetic field, a second wave emerged and two distinct waves were observed to simultaneously propagate, one in the direction of gravity and one in the direction of the magnetic field. As the magnetic field was further increased, the wave that propagated in the direction of gravity was suppressed and the wave was only observed to propagate in the direction of the applied magnetic field. We also observe that the speed and the kinetic temperature of the dust for the mode that propagated in the direction of gravity decreased with increasing magnetic field while the speed and the kinetic temperature of the dust for the mode that propagated in the direction of the magnetic field increased with increasing magnetic field. These measurements suggest that an ion-dust streaming instability is at least partially responsible for the high temperatures that have previously been observed in dusty plasmas when the dust acoustic wave is present.
This work presents an experimental investigation of the effects of vortex shedding suppression on the properties and recovery of turbulent wakes. Four plates, properly modified so that they produce different vortex shedding strengths, are tested using high speed particle image velocimetry and hot-wire anemometry, and analysed using spectral proper orthogonal decomposition, mean-flow linear stability analysis and various turbulence statistics. When present, vortex shedding is found to exhibit a characteristic frequency that scales with the mean shear, providing a link between the mean flow and the main turbulent motion. To achieve full suppression of shedding, we combine the effects of porosity and fractal perimeter. The mean shear is then decreased to the point where the flow becomes convectively unstable and shedding vanishes. In that case, the onset of self-similarity is delayed, compared with the case with vortex shedding, and appears after another large-scale structure, the secondary vortex street, emerges. It is also found that both large- and small-scale intermittency are starkly reduced when shedding is absent. A simple theoretical representation of the wake dynamics explains the evolution of the wake properties and its connection to the coherent structures in the flow.
In freely decaying stably stratified turbulent flows, numerical evidence shows that the horizontal displacement of Lagrangian tracers is diffusive while the vertical displacement converges towards a stationary distribution, as shown numerically by Kimura & Herring (J. Fluid Mech., vol. 328, 1996, pp. 253–269). Here, we develop a stochastic model for the vertical dispersion of Lagrangian tracers in stably stratified turbulent flows that aims to replicate and explain the emergence of a stationary probability distribution for the vertical displacement of such tracers. More precisely, our model is based on the assumption that the dynamical evolution of the tracers results from the competing effects of buoyancy forces that tend to bring a vertically perturbed fluid parcel (carrying tracers) to its equilibrium position and turbulent fluctuations that tend to disperse tracers. When the density of a fluid parcel is allowed to change due to molecular diffusion, a third effect needs to be taken into account: irreversible mixing. Indeed, ‘mixing’ dynamically and irreversibly changes the equilibrium position of the parcel and affects the buoyancy force that ‘stirs’ it on larger scales. These intricate couplings are modelled using a stochastic resetting process (Evans & Majumdar, Phys. Rev. Lett., vol. 106, issue 16, 2011, 160601) with memory. More precisely, Lagrangian tracers in stratified turbulent flows are assumed to follow random trajectories that obey a Brownian process. In addition, their stochastic paths can be reset to a given position (corresponding to the dynamically changing equilibrium position of a density structure containing the tracers) at a given rate. Scalings for the model parameters as functions of the molecular properties of the fluid and the turbulent characteristics of the flow are obtained by analysing the dynamics of an idealised density structure. Even though highly idealised, the model has the advantage of being analytically solvable. In particular, we show the emergence of a stationary distribution for the vertical displacement of Lagrangian tracers. We compare the predictions of this model with direct numerical simulation data at various Prandtl numbers $Pr$, the ratio of kinematic viscosity to molecular diffusion.
A quasi-linear reduced transport model is developed from a database of high-$\beta$ electromagnetic nonlinear gyrokinetic simulations performed with spherical tokamak for energy production (STEP) relevant parameters. The quasi-linear model is fully electromagnetic and accounts for the effect of equilibrium flow shear using a novel approach. Its flux predictions are shown to agree quantitatively with predictions from local nonlinear gyrokinetic simulations across a broad range of STEP-relevant local equilibria. This reduced transport model is implemented in the T3D transport solver that is used to perform the first flux-driven simulations for STEP to account for transport from hybrid kinetic ballooning mode turbulence, which dominates over a wide region of the core plasma. Nonlinear gyrokinetic simulations of the final transport steady state from T3D return turbulent fluxes that are consistent with the reduced model, indicating that the quasi-linear model may also be appropriate for describing the transport steady state. Within the assumption considered here, our simulations support the existence of a transport steady state in STEP with a fusion power comparable to that in the burning flat top of the conceptual design, but do not demonstrate how this state can be accessed.