To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We investigate the evolution of active galactic nucleus jets on kiloparsec-scales due to their interaction with the clumpy interstellar medium (ISM) of the host galaxy and, subsequently, the surrounding circumgalactic environment. Hydrodynamic simulations of this jet–environment interaction are presented for a range of jet kinetic powers, peak densities of the multiphase ISM, and scale radii of the larger-scale environment – characteristic of either a galaxy cluster or poor group. Synthetic radio images are generated by considering the combination of synchrotron radiation from the jet plasma and free-free absorption from the multiphase ISM. We find that jet propagation is slowed by interactions with a few very dense clouds in the host galaxy ISM, producing asymmetries in lobe length and brightness which persist to scales of tens of kpc for poor group environments. The classification of kiloparsec-scale jets is highly dependent on surface brightness sensitivity and resolution. Our simulations of young active sources can appear as restarted sources, showing double-double lobe morphology, high core prominence (CP $\gt 0.1$), and the expected radio spectra for both the inner- and outer-lobe components. We qualitatively reproduce the observed inverse correlation between peak frequency and source size and find that the peak frequency of the integrated radio spectrum depends on ISM density but not the jet power. Spectral turnover in resolved young radio sources therefore provides a new probe of the ISM.
We present the first radio–continuum detection of the circumstellar shell around the well-known WN8 type Wolf-Rayet star WR16 at 943.5 MHz using the Australian Square Kilometre Array Pathfinder (ASKAP) Evolutionary Map of the Universe (EMU) survey. At this frequency, the shell has a measured flux density of 72.2$\pm$7.2 mJy. Using previous Australia Telescope Compact Array (ATCA) measurements at 2.4, 4.8, and 8.64 GHz, as well as the Evolutionary Map of the Universe (EMU) observations of the star itself, we determine a spectral index of $\alpha\,=\,+0.74\pm0.02$, indicating thermal emission. We propose that the shell and star both exhibit thermal emission, supported by the its appearance in near-infrared and H$\alpha$ observations. The latest Gaia parallax is used to determine a distance of 2.28$\pm$0.09 kpc. This star is well known for its surrounding circular nebulosity, and using the distance and an angular diameter of $8.^{\prime}42$, we determine the shell size to be 5.57$\pm$0.22 pc. We use the Gaia proper motion (PM) of WR16 to determine peculiar velocities of the star as $V_{\alpha}(pec) =$ –45.3$\pm$5.4 km s$^{-1}$ and $V_{\delta}(pec) =$ 22.8$\pm$4.7 km s$^{-1}$, which indicates that the star is moving in a north-west direction, and translates to a peculiar tangential velocity to be 50.7$\pm$6.9 km s$^{-1}$. We also use these proper motion (PM) to determine the shell’s origin, estimate an age of $\sim 9500\pm 1300$ yr, and determine its average expansion velocity to be $280\pm40$ km s$^{-1}$. This average expansion velocity suggests that the previous transitional phase is a Luminous Blue Variable (LBV) phase, rather than a Red Super Giant (RSG) phase. We also use the measured flux at 943.5 MHz to determine a mass-loss rate of $1.753\times 10^{-5}\,{\rm M}_\odot\,$yr$^{-1}$, and use this to determine a lower-limit on ionising photons of $N_{UV} \gt 1.406\times 10^{47}\,\textit{s}^{-1}$.
Magnetic reconnection, a fundamental plasma process, is pivotal in understanding energy conversion and particle acceleration in astrophysical systems. While extensively studied in two-dimensional (2-D) configurations, the dynamics of reconnection in three-dimensional (3-D) systems remains under-explored. In this work, we extend the classical tearing mode instability to three dimensions by introducing a modulation along the otherwise uniform direction in a 2-D equilibrium, given by $g(y)$, mimicking a flux-tube-like configuration. We perform linear stability analysis (both analytically and numerically) and direct numerical simulations to investigate the effects of three-dimensionality. Remarkably, we find that a tearing-like instability arises in three dimensions as well, even without the presence of guide fields. Further, our findings reveal that the 3-D tearing instability exhibits reduced growth rates compared with two dimensions by a factor of $\int g(y)^{1/2} {\rm d}y\,/\int {\rm d}y$, with the dispersion relation maintaining similar scaling characteristics. We show that the modulation introduces spatially varying resistive layer properties, which influence the reconnection dynamics.
This study reports on a set of experiments designed to clarify the impact of the rotational transform on confinement quality at the TJ-II stellarator. For this purpose, the net plasma current is controlled using external coils, resulting in the modification of the rotational transform profile. Significant and systematic variations of the edge electron density gradients (up to $50\,\%{-}60\,\%$) and the plasma energy content ($20\,\%{-}30\,\%$) are achieved. The explanation of this behaviour relies on the placement of low-order rational surfaces in relation to the edge gradient region, which affect local turbulence fluctuation levels, facilitating the formation of zonal flows and concomitant transport barriers. This hypothesis is confirmed experimentally on the basis of a broad array of diagnostic measurements. Calculations based on a resistive magnetohydrodynamic turbulence model provide qualitative support for this hypothesis, clarifying the impact on confinement of specific rational surfaces and highlighting the complex nature of magnetically confined fusion plasmas.
The question of whether PCR is reliable sounds strange at first. However, looking at the scientific literature from the 1950s and 60s, one will find many publications on the physicochemistry of DNA that have been forgotten meanwhile. Quite a few of these studies have shown that DNA is thermolabile, which consequently raises the question of whether this thermolability is relevant in the context of PCR, namely in the denaturation phase. However, it can be shown that this is not the case: losses due to thermal hydrolysis are irrelevant for the performance of contemporary PCR protocols and their specificity as well as for the significance of their results. There is now a huge amount of scientifically verified and published data on technical and molecular aspects of PCR, a small selection of which we quote here. In addition, we present some primary data that also clearly demonstrate the reliability of PCR.
Stochastic resonance (SR) is universal phenomenon, where noise amplifies a weak periodic signal in bistable nonlinear systems, with wide applications in biology, climate science, engineering etc., although in fluid dynamics it remains underexplored. Recently, we unexpectedly found SR above non-modal elastic instability onset in an inertialess viscoelastic channel flow, where it emerges on the top of a chaotic streamwise velocity power spectrum $E_u$ due to its interaction with white-noise spanwise velocity power spectrum $E_w$ and weak elastic waves. These three conditions necessary for SR emergence differ from those required for the classical SR emergence mentioned above. Here, we consider SR in an inertialess viscoelastic channel flow with a smoothed inlet causing order of magnitude lower noise intensity than in our former studies. Our observations reveal that SR appears at the same conditions mentioned above, where SR is found just upon the instability onset in a lower subrange of a transition regime, in contrast, here, SR persists across all flow regimes – transition, elastic turbulence and drag reduction. Furthermore, we provide experimental evidence that SR, presented by a sharp peak in $E_u$, manifests as either a standing or propagating wave in the $x$-direction, with a rather uniform amplitude of streamwise velocity fluctuations and zero propagation velocity in the $z$-direction. These findings reveal a new mechanism underpinning the transition to a chaotic channel flow of viscoelastic fluids and establish SR as a robust framework for understanding complex flow dynamics. This work opens new avenues for exploring SR in other nonlinear systems and practical applications such as mixing enhancement and flow control in industrial and biological contexts.
Curvature-driven instabilities are ubiquitous in magnetised fusion plasmas. By analysing the conservation laws of the gyrokinetic system of equations, we demonstrate that the well-known spatial localisation of these instabilities to regions of ‘bad magnetic curvature’ can be explained using the conservation law for a sign-indefinite quadratic quantity that we call the gyrokinetic field invariant. Its evolution equation allows us to define the local effective magnetic curvature whose sign demarcates the regions of ‘good’ and ‘bad’ curvature, which, under some additional simplifying assumptions, can be shown to correspond to the inboard (high-field) and outboard (low-field) sides of a tokamak plasma, respectively. We find that, given some reasonable assumptions, electrostatic curvature-driven modes are always localised to the regions of bad magnetic curvature, regardless of the specific character of the instability. More importantly, we also deduce that any mode that is unstable in the region of good magnetic curvature must be electromagnetic in nature. As a concrete example, we present the magnetic-drift mode, a novel good-curvature electromagnetic instability, and compare its properties with the well-known electron-temperature-gradient instability. Finally, we discuss the relevance of the magnetic drift mode for high-$\beta$ fusion plasmas, and in particular its relationship with microtearing modes.
For small-shear helical-axis stellarators, linear ideal-magnetohydrodynamic (MHD) stability calculations and full-torus, nonlinear, electromagnetic gyrokinetic (GK) simulations (the latter with this unprecedented combination of objectives in stellarator GKs) in their linear phase are shown to yield well agreeing spatio-temporal structures of unstable, globally extended perturbations. Likewise, good agreement is found for their dependence on the plasma pressure and the vacuum-field magnetic well in plasma equilibria with identical gradient lengths of the temperature and density profiles. In the nonlinear phase, these perturbations with MHD signatures entail deformations of the magnetic surfaces, growing magnetic islands which rotate in the electron diamagnetic direction and, eventually, lead to ergodisation of a larger part of the magnetic surfaces.
A technique developed to accurately simulate the amplification of back-reflected light through a multi-petawatt laser system is presented. Using the Frantz–Nodvik equation, we developed an iterative algorithm to simulate the amplification of the main beam as it propagates through solid-state multipass amplifiers, while also accounting for back-reflections from experimental targets and the residual gain within the crystals. Our technique builds on the theoretical model by estimating the energy levels after multiple passes through all amplifiers and refining the simulated data using a brute-force optimization algorithm. We also demonstrate an application of this tool aimed at evaluating machine safety: optimizing the laser system to minimize crystal gain in the post-pulse regime and, consequently, the amplification of back-reflections, while taking advantage of the B-integral.
An analysis is presented of the suspensions of small, electrified particles in a gas. Two limits of interest for the electrodynamic particulate suspension technique are considered, corresponding to large and small values of the ratio $t_{coll}/t_s$ of the mean time between particle collisions to the viscous adaptation time required for the particles to reach their terminal velocities. The effect of the particle inertia can be neglected when this ratio is large, and only the distribution of particle charges at each point of the suspension needs to be computed. The way this distribution approaches an equilibrium form, determined elsewhere in the continuum regime when the mean free path of the particles is small compared with the suspension size, is described, as well as the connection between continuum regime and quasi-neutrality of the suspension. In the opposite case when $t_{coll}/t_s$ is small, the inertia of the particles plays an important role, and the joint distribution of particle charges and velocities is required. A Boltzmann equation is proposed for this distribution function, taking advantage of the fact that the charges of the particles have little effect on the redistribution of momentum and energy in the collisions. The equilibrium distribution function in the continuum regime is computed approximately, and hydrodynamic equations for the particle phase analogous to the Euler equations for a monoatomic gas are derived. The simplification of these equations when the particle inertia is negligible at the scale of the suspension is worked out.
A broadband, antireflective metasurface optic on a silica substrate is subjected to laser-induced damage-threshold measurements to quantify its performance under exposure to high-intensity/fluence laser pulses in the near-infrared at four pulse durations, ranging from 20 fs to 1.4 ns. The performance of the metasurface is benchmarked against that obtained from an equivalent bare fused-silica substrate that did not receive reactive-ion-etching metasurface treatment. Results showed that the damage threshold of the antireflective metasurface was always lower than the input-surface damage threshold of the untreated substrate. The damage initiations with nanosecond and picosecond pulses resulted in localized modification and removal of the nanostructures, whereas the onset of laser-induced modification with 20-fs pulses in a vacuum environment manifested as changes in the optical and electronic properties without significant material removal. The broader goal of this work is to develop a preliminary understanding of the laser-induced failure mechanisms of silica-based metasurface optics.
Very long baseline interferometry (VLBI) astrometry is used to determine the three-dimensional position and proper motion of astronomical objects. A typical VLBI astrometric campaign generally includes around ten observations, making it challenging to characterise systematic uncertainties. Our study on two bright pulsars, B0329+54 and B1133+16, involves analysis of broadband Very Long Baseline Array (VLBA) data over $\sim30$ epochs (spanning approximately 3.5 yr). This extended dataset has significantly improved the precision of the astrometric estimates of these pulsars. Our broadband study suggests that, as expected, the primary contribution to systematic uncertainties in L-band VLBI astrometry originates from the ionosphere. We have also assessed the effectiveness of the modified total electron content (TEC) mapping function, which converts vertical TEC to slant TEC, in correcting ionospheric dispersive delays using global TEC maps. The astrometric parameters (parallax and proper motion) obtained from the multiple datasets, calibrated using the traditional and the modified TEC mapping functions, are consistent. However, the reduced chi-square values from least-squares fitting and precision of the fitted astrometric parameters show no significant improvement, and hence, the effectiveness of the new TEC mapping function on astrometry is unclear. For B0329+54, the refined parallax estimate is $0.611^{+0.013}_{-0.013}$ mas, with best-fit proper motion of $\mu_{\alpha} = 16.960^{+0.011}_{-0.010}\, \textrm{mas}\,{\rm yr}^{-1}$ in R.A. and and $\mu_{\delta} = -10.382^{+0.022}_{-0.022}\,\textrm{mas}\,{\rm yr}^{-1}$ in Dec. These correspond to a distance of $1.64^{+0.03}_{-0.03}$ kpc and a transverse velocity of $\sim 154\, \textrm{km}\,{\rm s}^{-1}$. For B1133+16, the new estimated parallax is $2.705^{+0.009}_{-0.009}$ mas, with proper motions of $\mu_{\alpha} = -73.777^{+0.008}_{-0.008}\, \textrm{mas}\,{\rm yr}^{-1}$ and $\mu_{\delta} = 366.573^{+0.019}_{-0.019}\, \textrm{mas}\,{\rm yr}^{-1}$, implying a distance of $370^{+1}_{-1}$ pc and a transverse velocity of $\sim 656\, \textrm{km}\,{\rm s}^{-1}$. The proper motions of B0329+54 and B1133+16 are consistent within $1\sigma$ of the most precise values reported in the literature to date while achieving more than a twofold improvement in precision. Similarly, the parallax measurements for both pulsars show a $\sim 73\%$ enhancement in precision, with differences of approximately $\lt 1\sigma$ compared to the most precise published values to date.
This work explores the use of a shallow surface hump for passive control and stabilisation of stationary crossflow (CF) instabilities. Wind tunnel experiments are conducted on a spanwise-invariant swept-wing model. The influence of the hump on the boundary layer stability and laminar–turbulent transition is assessed through infrared thermography and particle image velocimetry measurements. The results reveal a strong dependence of the stabilisation effect on the amplitude of the incoming CF disturbances, which is conditioned via discrete roughness elements at the wing leading edge. At a high forcing amplitude, weakly nonlinear stationary CF vortices interact with the hump and result in an abrupt anticipation of transition, essentially tripping the flow. In contrast, at a lower forcing amplitude, CF vortices interact with the hump during linear growth. Notable stabilisation of the primary CF disturbance and considerable transition delay with respect to the reference case (i.e. without hump) is then observed. The spatial region just downstream of the hump apex is shown to be key to the stabilisation mechanism. In this region, the primary CF disturbances rapidly change spanwise orientation and shape, possibly driven by the pressure gradient change-over caused by the hump and the development of CF reversal. The amplitude and shape deformation of the primary CF instabilities are found to contribute to a long-lasting suboptimal growth downstream of the hump, eventually leading to transition delay.
Researchers have long debated which spatial arrangements and swimming synchronisations are beneficial for the hydrodynamic performance of fish in schools. In our previous work (Seo and Mittal, Bioinsp. Biomim., Vol. 17, 066020, 2022), we demonstrated using direct numerical simulations that hydrodynamic interactions with the wake of a leading body -caudal fin carangiform swimmer could significantly enhance the swimming performance of a trailing swimmer by augmenting the leading-edge vortex (LEV) on its caudal fin. In this study, we develop a model based on the phenomenology of LEV enhancement, which utilises wake velocity data from direct numerical simulations of a leading fish to predict the trailing swimmer’s hydrodynamic performance without additional simulations. For instance, the model predicts locations where direct simulations confirm up to 20 % enhancement of thrust. This approach enables a comprehensive analysis of the effects of relative positioning, phase difference, flapping amplitude, Reynolds number and the number of swimmers in the school on thrust enhancement. The results offer several insights regarding the effect of these parameters that have implications for fish schools as well as for bio-inspired underwater vehicle applications.
A drop of an electrically conducting non-magnetic fluid of radius $R$, electrical conductivity $\kappa$, density $\rho _i$ and viscosity $\eta _i$ is suspended in a non-conducting medium of density $\rho _o$, viscosity $\eta _o$ and subject to an oscillating magnetic field of magnitude $H_0$ and angular frequency $\omega$. Oscillating eddy currents are induced in the drop due to Faraday’s law. The Lorentz force density, the cross product of the current density and the magnetic field, is the superposition of a steady component and an oscillating component with frequency $2 \omega$. The characteristic velocity due to the Lorentz force density is $(\mu _0 H_0^2 R/\eta _i)$ times a function of the dimensionless parameter $\beta = \sqrt {\mu _0 \kappa \omega R^2}$, the square root of the ratio of the frequency and the current relaxation rate. Here, $\mu _0$ is the magnetic permeability. The characteristic velocities for the steady and oscillatory components increase proportional to $\beta ^{4}$ for $\beta \ll 1$, and decrease proportional to $\beta ^{-1}$ for $\beta \gg 1$. The steady flow field consists of two axisymmetric eddies in the two hemispheres with flow outwards along the magnetic field axis and inwards along the equator. The flow in the drop induces a biaxial extensional flow in the surrounding medium, with compression along the magnetic axis and extension along the equatorial plane. The oscillating component of the velocity depends on $\beta$ and the Reynolds number ${Re}_\omega$ based on the frequency of oscillations. For ${Re}_\omega \gg 1$, the amplitude of the oscillatory velocity decreases proportional to ${Re}_\omega ^{-1}$ for $\beta \ll 1$, and proportional to ${Re}_\omega ^{-1/2}$ for $\beta \gg 1$.
Entangled vortex filaments are essential to turbulence, serving as coherent structures that govern nonlinear fluid dynamics and support the reconstruction of fluid fields to reveal statistical properties. This study introduces a quantum implicit representation of vortex filaments in turbulence, employing a levelset method that models the filaments as the intersection of the real and imaginary zero iso-surfaces of a complex scalar field. Describing the fluid field via the scalar field offers distinct advantages in capturing complex structures, topological properties and fluid dynamics, while opening new avenues for innovative solutions through quantum computing platforms. The representation is reformulated into an eigenvalue problem for Hermitian matrices, enabling the conversion of velocity fields into complex scalar fields that embed the vortex filaments. The resulting optimisation is addressed using a variational quantum eigensolver, with Pauli operator truncation and deep learning techniques applied to improve efficiency and reduce noise. The proposed quantum framework achieves a near-linear time complexity and a exponential storage reduction while maintaining a balance of accuracy, robustness and versatility, presenting a promising tool for turbulence analysis, vortex dynamics research, and machine learning dataset generation.
We present results of three-dimensional direct numerical simulations of turbulent Rayleigh–Bénard convection of dilute polymeric solutions for Rayleigh number ($Ra$) ranging from $10^6$ to $ 10^{10}$, and Prandtl number $Pr=4.3$. The viscoelastic flow is simulated by solving the incompressible Navier–Stokes equations under the Boussinesq approximation coupled with the finitely extensible nonlinear elastic Peterlin constitutive model. The Weissenberg number ($Wi$) is either $Wi=5$ or $Wi=10$, with the maximum chain extensibility parameter $L=50$, corresponding to moderate fluid elasticity. Our results demonstrate that both heat transport and momentum transport are reduced by the presence of polymer additives in the studied parameter range. Remarkably, the specific parameters used in the current numerical study give similar heat transfer reduction values as observed in experiments. We demonstrate that polymers have different effects in different regions of the flow. The presence of polymers stabilises the boundary layer, which is found to be the primary cause of the overall heat transfer reduction. In the bulk region, the presence of polymers slows down the flow by increasing the effective viscosity, enhances the coherency of thermal plumes, and suppresses the small-scale turbulent fluctuations. For small $Ra$, the heat transfer reduction in the bulk region is associated with plume velocity reduction, while for larger $Ra$, it is caused by the competing effects of suppressed turbulent fluctuations and enhanced plume coherency.
Assemblies of slender structures forming brushes are common in daily life from sweepers to pastry brushes and paintbrushes. These types of porous objects can easily trap liquid in their interstices when removed from a liquid bath. This property is exploited to transport liquids in many applications, ranging from painting, dip-coating and brush-coating to the capture of nectar by bees, bats and honeyeaters. Rationalising the viscous entrainment flow beyond simple scaling laws is complex due to the multiscale structure and the multidirectional flow. Here, we provide an analytical model, together with precision experiments with ideal rigid brushes, to fully characterise the flow through this anisotropic porous medium as it is withdrawn from a liquid bath. We show that the amount of liquid entrained by a brush varies non-monotonically during the withdrawal at low speed, is highly sensitive to the different parameters at play and is very well described by the model without any fitting parameter. Finally, an optimal brush geometry maximising the amount of liquid captured at a given retraction speed is derived from the model and experimentally validated. These optimal designs open routes towards efficient liquid-manipulating devices.
In the present work, we experimentally investigate the transverse injection of elliptic liquid jets into a supersonic cross-flow ($M_\infty$ = 2.5). The primary focus is to understand the effect of injection orifice aspect ratio ($\textit{AR}$ = spanwise/streamwise dimension), on the liquid jet breakup mechanism, the flow field around the liquid jet and the resulting droplet sizes formed downstream, for three $\textit{AR}$ cases ($\textit{AR}$ = 0.3, 1, 3.3). We find that the $\textit{AR}$ = 0.3 case has large unsteadiness in the spray core due to relatively large wavelength Rayleigh–Taylor (RT) waves formed on the liquid jet surface. However, the primary jet breakup occurs through Kelvin–Helmholtz (KH) instabilities formed on the large lateral surfaces, as in coaxial liquid jet breakup. This leads to a higher Sauter mean diameter (SMD) of the droplets in the spray core with a wider range of droplet sizes compared with the circular case ($\textit{AR}$ = 1.0). However, in the case of $\textit{AR}$ = 3.3, the RT waves are more intense and of smaller wavelength due to the large drag on the liquid jet, which results in a direct catastrophic breakup of the liquid jet by the RT waves. This results in a relatively steady liquid jet and shock structure with the formation of a fine spray and smaller droplets in the spray core than for the $\textit{AR}=1.0$ case. The study shows the importance of the orifice $\textit{AR}$ on the flow around, and the spray downstream of, the liquid jet injection into supersonic cross-flow.